megatron_patch/model/baichuan2/transformer.py [1225:1863]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        if self.apply_residual_connection_post_norm:
            residual = norm_output
        else:
            residual = hidden_states

        if self.drop_path is None:
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
            else:
                bias_dropout_add_func = get_bias_dropout_add(self.training)

            if attention_bias is not None:
                attention_bias = attention_bias.expand_as(residual)
            with self.bias_dropout_add_exec_handler():
                norm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias,
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            norm_input = residual + self.drop_path(out)

        # Layer norm post the self attention.
        norm_output = self.post_attention_norm(norm_input)

        # Cross attention.
        if self.layer_type == LayerType.encoder:
            pass
        elif self.layer_type == LayerType.decoder:
            norm_input, norm_output = \
                self.default_decoder_cross_attention(
                    encoder_output,
                    enc_dec_attn_mask,
                    norm_input,
                    norm_output,
                    bias_dropout_add_func)
        elif self.layer_type == LayerType.retro_encoder:
            norm_input, norm_output = \
                self.retro_encoder_cross_attention(
                    retriever_output,
                    norm_input,
                    norm_output,
                    bias_dropout_add_func)
        elif self.layer_type in (LayerType.retro_decoder,
                                 LayerType.retro_decoder_with_retriever):
            retriever_output, norm_input, norm_output = \
                self.retro_decoder_cross_attention(
                    retriever_input,
                    retriever_output,
                    retriever_attn_mask,
                    norm_input,
                    norm_output,
                    inference_params,
                    bias_dropout_add_func)
        else:
            raise Exception("Unsupported layer type, '%s'." %
                            self.layer_type.name)

        # MLP.
        mlp_output, mlp_bias = self.mlp(norm_output)

        # Second residual connection.
        if self.apply_residual_connection_post_norm:
            residual = norm_output
        else:
            residual = norm_input

        if self.drop_path is None:
            if mlp_bias is not None:
                mlp_bias = mlp_bias.expand_as(residual)
            with self.bias_dropout_add_exec_handler():
                output = bias_dropout_add_func(
                    mlp_output,
                    mlp_bias,
                    residual,
                    self.hidden_dropout)

            # Jit compiled function creates 'view' tensor. This tensor
            # potentially gets saved in the MPU checkpoint function context,
            # which rejects view tensors. While making a viewless tensor here
            # won't result in memory savings (like the data loader, or
            # p2p_communication), it serves to document the origin of this
            # 'view' tensor.
            output = core.utils.make_viewless_tensor(inp = output,
                                                     requires_grad = output.requires_grad,
                                                     keep_graph = True)

        else:
            if mlp_bias is not None:
                mlp_output = mlp_output + mlp_bias
            out = torch.nn.functional.dropout(mlp_output,
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)

        if self.layer_type == LayerType.retro_decoder_with_retriever:
            return output, retriever_output
        else:
            return output


class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

    The sole purpose of this layer is for when a standalone embedding layer
    is used (i.e., args.standalone_embedding_stage == True). In this case,
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


def _get_num_layers(args, model_type, is_decoder=False):
    """Compute the number of transformer layers resident on the current rank."""
    is_encoder_and_decoder_model = (model_type == ModelType.encoder_and_decoder)
    if model_type == ModelType.retro_encoder:
        num_layers = args.retro_encoder_layers
    elif mpu.get_pipeline_model_parallel_world_size() > 1:
        if is_encoder_and_decoder_model:
            assert args.pipeline_model_parallel_split_rank is not None

            # When a standalone embedding stage is used, a rank is taken from
            # the encoder's ranks, to be used for the encoder's embedding
            # layer. This way, the rank referenced by the 'split rank' remains
            # the same whether or not a standalone embedding stage is used.
            num_ranks_in_encoder = (
                args.pipeline_model_parallel_split_rank - 1
                if args.standalone_embedding_stage else
                args.pipeline_model_parallel_split_rank
            )
            num_ranks_in_decoder = args.transformer_pipeline_model_parallel_size - num_ranks_in_encoder
            assert args.encoder_num_layers % num_ranks_in_encoder == 0, \
                    'encoder_num_layers (%d) must be divisible by number of ranks given to encoder (%d)' % (args.encoder_num_layers, num_ranks_in_encoder)
            assert args.decoder_num_layers % num_ranks_in_decoder == 0, \
                    'decoder_num_layers (%d) must be divisible by number of ranks given to decoder (%d)' % (args.decoder_num_layers, num_ranks_in_decoder)
            if mpu.is_pipeline_stage_before_split():
                num_layers = (
                    0
                    if args.standalone_embedding_stage
                    and mpu.get_pipeline_model_parallel_rank() == 0 else
                    args.encoder_num_layers // num_ranks_in_encoder
                )
            else:
                num_layers = args.decoder_num_layers // num_ranks_in_decoder
        else:
            assert args.num_layers == args.encoder_num_layers
            assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
                'num_layers must be divisible by transformer_pipeline_model_parallel_size'

            # When a standalone embedding stage is used, all transformer layers
            # are divided among pipeline rank >= 1, while on pipeline rank 0,
            # ranks either contain the input embedding layer (virtual pp rank 0),
            # or no layers at all (virtual pp rank >= 1).
            num_layers = (
                0
                if args.standalone_embedding_stage
                and mpu.get_pipeline_model_parallel_rank() == 0 else
                args.num_layers // args.transformer_pipeline_model_parallel_size
            )
    else:
        if not is_decoder:
            num_layers = args.encoder_num_layers
        else:
            num_layers = args.decoder_num_layers
    return num_layers


def _get_layer_type(model_type, default_layer_type, retro_layer_numbers,
                    layer_number):
    args = get_args()
    if args.retro_add_retriever and layer_number in retro_layer_numbers:
        if model_type == ModelType.retro_decoder:
            return LayerType.retro_decoder_with_retriever \
                if layer_number == retro_layer_numbers[0] \
                   else LayerType.retro_decoder
        elif model_type == ModelType.retro_encoder:
            return LayerType.retro_encoder
        else:
            raise Exception("Unsupported model type, '%s'." % model_type)
    else:
        return default_layer_type


class ParallelTransformer(MegatronModule):
    """Transformer class."""

    def __init__(self, config,
                 model_type, layer_type=LayerType.encoder,
                 self_attn_mask_type=AttnMaskType.padding,
                 post_norm=True,
                 pre_process=True,
                 post_process=True,
                 drop_path_rate=0.0):
        super(ParallelTransformer, self).__init__()
        args = get_args()

        self.layer_type = layer_type
        self.model_type = model_type
        self.bf16 = config.bf16
        self.fp32_residual_connection = config.fp32_residual_connection
        self.post_norm = post_norm
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
        self.drop_path_rate = drop_path_rate
        self.transformer_impl = args.transformer_impl
        self.retro_add_retriever = args.retro_add_retriever

        # Store activation checkpoiting flag.
        self.recompute_granularity = config.recompute_granularity
        self.recompute_method = config.recompute_method
        self.recompute_num_layers = config.recompute_num_layers
        self.distribute_saved_activations = \
            config.distribute_saved_activations and not config.sequence_parallel

        self.sequence_parallel = config.sequence_parallel

        # Transformer Engine Init.
        self.transformer_engine_v_0_10 = False
        self.transformer_engine_v_0_11 = False
        self.transformer_engine_v_0_8 = False
        if self.transformer_impl == 'transformer_engine':
            global transformer_engine
            import transformer_engine
            from importlib.metadata import version
            from pkg_resources import packaging

            te_version = packaging.version.Version(version("transformer-engine"))
            if te_version >= packaging.version.Version("0.8.0"):
                self.transformer_engine_v_0_8 = True
            if te_version >= packaging.version.Version("0.10.0"):
                self.transformer_engine_v_0_10 = True
            if te_version >= packaging.version.Version("0.11.0"):
                self.transformer_engine_v_0_11 = True

            del version, packaging

            assert not args.squared_relu, "TransformerEngine does not support squared relu activation."

        self.use_fp8 = args.fp8 is not None
        self.fp8_recipe = None
        self.fp8_group = None
        if self.use_fp8:
            assert args.transformer_impl == 'transformer_engine', \
                'transformer-engine required for fp8 training and inference'
            self.fp8_group = mpu.get_amax_reduction_group()
            if args.fp8 == "e4m3":
                fp8_format = transformer_engine.common.recipe.Format.E4M3
            elif args.fp8 == "hybrid":
                fp8_format = transformer_engine.common.recipe.Format.HYBRID
            else:
                raise ValueError("The DelayedScaling recipe only supports E4M3 and HYBRID formats.")
            self.fp8_recipe = transformer_engine.common.recipe.DelayedScaling(
                margin=args.fp8_margin,
                interval=args.fp8_interval,
                fp8_format=fp8_format,
                amax_history_len=args.fp8_amax_history_len,
                amax_compute_algo=args.fp8_amax_compute_algo,
                override_linear_precision=(False, False, not args.fp8_wgrad),
            )

        self.num_microbatches_in_previous_step = -1
        self.microbatch_count = 0
        self.checkpoint_core_attention = config.recompute_granularity == 'selective'

        # Number of layers.
        self.num_layers = _get_num_layers(args, model_type,
                                          layer_type==LayerType.decoder)

        self.drop_path_rates = [
            rate.item() for rate in
            torch.linspace(0, self.drop_path_rate, config.num_layers)]

        self.retro_layer_numbers = None
        if model_type == ModelType.retro_decoder:
            retro_layer_start = 6 if config.num_layers <= 15 else 9
            self.retro_layer_numbers = \
                np.arange(retro_layer_start, args.num_layers + 1, 3).tolist()
        if model_type == ModelType.retro_encoder:
            self.retro_layer_numbers = [1]

        # Transformer layers.
        if args.retro_add_retriever:
            assert self.recompute_granularity != 'full', \
                "Full recompute not supported for Retro."
            assert args.transformer_impl == 'local', \
                "Transformer engine does not support Retro layers."
        def build_layer(layer_number):
            if args.transformer_impl == 'local':
                current_layer_type = _get_layer_type(
                    model_type, layer_type, self.retro_layer_numbers,
                    layer_number)
                return ParallelTransformerLayer(
                    config,
                    layer_number,
                    layer_type=current_layer_type,
                    self_attn_mask_type=self_attn_mask_type,
                    drop_path_rate=self.drop_path_rates[layer_number - 1])
            else:
                # This argument is only available from TE v0.10 onwards.
                extra_transformer_engine_kwargs = {}
                if self.transformer_engine_v_0_8:
                    extra_transformer_engine_kwargs["bias"] = args.add_bias_linear
                if self.transformer_engine_v_0_10:
                    extra_transformer_engine_kwargs["activation"] = "swiglu" if args.swiglu else "gelu"
                if self.transformer_engine_v_0_11:
                    extra_transformer_engine_kwargs["normalization"] = args.normalization
                return transformer_engine.pytorch.TransformerLayer(
                    config.hidden_size,
                    config.ffn_hidden_size,
                    config.num_attention_heads,
                    layernorm_epsilon=config.layernorm_epsilon,
                    hidden_dropout=config.hidden_dropout,
                    attention_dropout=config.attention_dropout,
                    init_method=config.init_method,
                    output_layer_init_method=config.output_layer_init_method,
                    layer_number=layer_number,
                    kv_channels=config.kv_channels,
                    self_attn_mask_type=self_attn_mask_type.name,
                    tp_group=mpu.get_tensor_model_parallel_group(),
                    get_rng_state_tracker=tensor_parallel.get_cuda_rng_tracker,
                    fuse_wgrad_accumulation=config.gradient_accumulation_fusion,
                    apply_query_key_layer_scaling=config.apply_query_key_layer_scaling,
                    attention_softmax_in_fp32=config.attention_softmax_in_fp32,
                    seq_length=args.seq_length,
                    micro_batch_size=args.micro_batch_size,
                    sequence_parallel=config.sequence_parallel,
                    params_dtype=config.params_dtype,
                    apply_residual_connection_post_layernorm=config.apply_residual_connection_post_layernorm,
                    output_layernorm=False,
                    layer_type="encoder",
                    drop_path_rate=self.drop_path_rates[layer_number - 1],
                    set_parallel_mode=True,
                    fuse_qkv_params=True,
                    **extra_transformer_engine_kwargs)

        if config.virtual_pipeline_model_parallel_size is not None:
            assert config.num_layers % config.virtual_pipeline_model_parallel_size == 0, \
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
            assert args.model_type != ModelType.encoder_and_decoder
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
            self.num_layers = self.num_layers // config.virtual_pipeline_model_parallel_size
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
                config.num_layers // config.virtual_pipeline_model_parallel_size) + \
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
        else:
            # Each stage gets a contiguous set of layers.
            if args.model_type == ModelType.encoder_and_decoder and \
                    mpu.get_pipeline_model_parallel_world_size() > 1:
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers

        if self.num_layers == 0:
            # When a standalone embedding stage is used (e.g.,
            # args.standalone_embedding_stage == True), virtual pipeline ranks
            # on pipeline rank 0 will have zero transformer layers assigned to
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])

            # Update dropout rate for Retro encoder.
            if model_type == ModelType.retro_encoder:
                for layer in self.layers:
                    if layer.self_attention.use_flash_attn:
                        layer.self_attention.core_attention_flash.dropout_p = \
                            torch.nn.Dropout(args.retro_encoder_attention_dropout)
                    else:
                        layer.self_attention.core_attention.attention_dropout.p =\
                            args.retro_encoder_attention_dropout
                    layer.hidden_dropout = args.retro_encoder_hidden_dropout

        if self.post_process and self.post_norm:
            # Final layer norm before output.
            self.final_norm = get_norm(config)

    def _get_layer(self, layer_number):
        return self.layers[layer_number]

    def _checkpointed_forward(self, hidden_states, attention_mask,
                              encoder_output, enc_dec_attn_mask,
                              rotary_pos_emb, is_first_microbatch):
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*args, **kwargs):
                x_, *args = args
                for index in range(start, end):
                    layer = self._get_layer(index)
                    x_ = layer(x_, *args, **kwargs)
                return x_
            return custom_forward

        te_forward_kwargs = {}
        if self.transformer_impl == 'transformer_engine':
            te_forward_kwargs['is_first_microbatch'] = is_first_microbatch
            if self.transformer_engine_v_0_10:
                te_forward_kwargs['rotary_pos_emb'] = rotary_pos_emb

        if self.recompute_method == 'uniform':
            # Uniformly divide the total number of Transformer layers and
            # checkpoint the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
                if self.transformer_impl == 'transformer_engine':
                    hidden_states = transformer_engine.pytorch.checkpoint(
                        custom(l, l + self.recompute_num_layers),
                        self.distribute_saved_activations,
                        tensor_parallel.get_cuda_rng_tracker,
                        mpu.get_tensor_model_parallel_group(),
                        hidden_states, attention_mask, encoder_output,
                        enc_dec_attn_mask, **te_forward_kwargs)
                else:
                    hidden_states = tensor_parallel.checkpoint(
                        custom(l, l + self.recompute_num_layers),
                        self.distribute_saved_activations,
                        hidden_states, attention_mask,
                        encoder_output, enc_dec_attn_mask,
                        None, None, None, None, rotary_pos_emb)

                l += self.recompute_num_layers

        elif self.recompute_method == 'block':
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
                if l < self.recompute_num_layers:
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = transformer_engine.pytorch.checkpoint(
                            custom(l, l + 1),
                            self.distribute_saved_activations,
                            tensor_parallel.get_cuda_rng_tracker,
                            mpu.get_tensor_model_parallel_group(),
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, **te_forward_kwargs)
                    else:
                        hidden_states = tensor_parallel.checkpoint(
                            custom(l, l + 1),
                            self.distribute_saved_activations,
                            hidden_states, attention_mask,
                            encoder_output, enc_dec_attn_mask,
                            None, None, None, None, rotary_pos_emb)
                else:
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = custom(l, l + 1)(
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, **te_forward_kwargs)
                    else:
                        hidden_states = custom(l, l + 1)(
                            hidden_states, attention_mask,
                            encoder_output, enc_dec_attn_mask,
                            None, None, None, None, rotary_pos_emb)
        else:
            raise ValueError("Invalid activation recompute method.")

        return hidden_states

    def set_input_tensor(self, input_tensor):
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
        self.input_tensor = input_tensor

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                retriever_input=None,
                retriever_output=None,
                retriever_attn_mask=None,
                inference_params=None,
                rotary_pos_emb=None):
        # hidden_states: [s, b, h]

        # Checks.
        if inference_params:
            assert self.recompute_granularity is None, \
                'inference does not work with activation checkpointing'

        if not self.pre_process:
            # See set_input_tensor()
            hidden_states = self.input_tensor

        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
        #
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
        hidden_states = core.utils.make_viewless_tensor(
            hidden_states,
            requires_grad=True,
            keep_graph=True,
        )

        # RNG context.
        if self.sequence_parallel:
            rng_context = tensor_parallel.get_cuda_rng_tracker().fork()
        else:
            rng_context = nullcontext()

        # Forward layers.
        with rng_context:
            # The fp8_autocast context manager is a no-op when enabled=True
            # The if...else serves to short circuit name resolution for fp8_autocast
            with transformer_engine.pytorch.fp8_autocast(
                enabled=self.use_fp8,
                fp8_recipe=self.fp8_recipe,
                fp8_group=self.fp8_group
            ) if self.use_fp8 else nullcontext():
                # Determine if the current iteration is first microbatch
                if self.num_microbatches_in_previous_step != get_num_microbatches():
                    self.microbatch_count = 0 # Reset count on new batch size rampup interval
                self.num_microbatches_in_previous_step = get_num_microbatches()
                is_first_microbatch = self.microbatch_count % get_num_microbatches() == 0

                # Forward pass.
                if self.recompute_granularity == 'full':
                    hidden_states = self._checkpointed_forward(hidden_states,
                                                               attention_mask,
                                                               encoder_output,
                                                               enc_dec_attn_mask,
                                                               rotary_pos_emb,
                                                               is_first_microbatch)
                else:
                    forward_kwargs = {
                        'encoder_output': encoder_output,
                        'enc_dec_attn_mask': enc_dec_attn_mask,
                        'inference_params': inference_params,
                    }

                    if self.transformer_impl == 'transformer_engine':
                        forward_kwargs['is_first_microbatch'] = is_first_microbatch
                        forward_kwargs['checkpoint_core_attention'] = self.checkpoint_core_attention
                        if self.transformer_engine_v_0_10:
                            forward_kwargs['rotary_pos_emb'] = rotary_pos_emb
                    else:
                        forward_kwargs['rotary_pos_emb'] = rotary_pos_emb
                        forward_kwargs['retriever_input'] = retriever_input
                        forward_kwargs['retriever_output'] = retriever_output
                        forward_kwargs['retriever_attn_mask'] = retriever_attn_mask

                    for index in range(self.num_layers):
                        layer = self._get_layer(index)

                        hidden_states = layer(
                            hidden_states,
                            attention_mask,
                            **forward_kwargs)

                        # First Retro decoder layer returns both hidden_states
                        # and retriever_output. Make retriever_output available
                        # to subsequence Retro layers.
                        if isinstance(hidden_states, tuple):
                            assert len(hidden_states) == 2
                            hidden_states, retriever_output = hidden_states
                            forward_kwargs["retriever_output"] = retriever_output

                # Skip counter update for eval and activation checkpointing
                if torch.is_grad_enabled() and self.training:
                    self.microbatch_count += 1

        # Final layer norm.
        if self.post_process and self.post_norm:
            hidden_states = self.final_norm(hidden_states)

        return hidden_states

    def load_state_dict(self, state_dict, strict=True):
        """Customize load."""

        # Handle renaming layernorm -> norm in component names
        args = get_args()
        state_dict_ = {}
        for key in state_dict.keys():
            if args.transformer_impl != "transformer_engine":
                newkey = key.replace("layernorm", "norm")
                state_dict_[newkey] = state_dict[key]
            else:
                state_dict_[key] = state_dict[key]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



megatron_patch/model/qwen/transformer.py [1167:1805]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        if self.apply_residual_connection_post_norm:
            residual = norm_output
        else:
            residual = hidden_states

        if self.drop_path is None:
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
            else:
                bias_dropout_add_func = get_bias_dropout_add(self.training)

            if attention_bias is not None:
                attention_bias = attention_bias.expand_as(residual)
            with self.bias_dropout_add_exec_handler():
                norm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias,
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            norm_input = residual + self.drop_path(out)

        # Layer norm post the self attention.
        norm_output = self.post_attention_norm(norm_input)

        # Cross attention.
        if self.layer_type == LayerType.encoder:
            pass
        elif self.layer_type == LayerType.decoder:
            norm_input, norm_output = \
                self.default_decoder_cross_attention(
                    encoder_output,
                    enc_dec_attn_mask,
                    norm_input,
                    norm_output,
                    bias_dropout_add_func)
        elif self.layer_type == LayerType.retro_encoder:
            norm_input, norm_output = \
                self.retro_encoder_cross_attention(
                    retriever_output,
                    norm_input,
                    norm_output,
                    bias_dropout_add_func)
        elif self.layer_type in (LayerType.retro_decoder,
                                 LayerType.retro_decoder_with_retriever):
            retriever_output, norm_input, norm_output = \
                self.retro_decoder_cross_attention(
                    retriever_input,
                    retriever_output,
                    retriever_attn_mask,
                    norm_input,
                    norm_output,
                    inference_params,
                    bias_dropout_add_func)
        else:
            raise Exception("Unsupported layer type, '%s'." %
                            self.layer_type.name)

        # MLP.
        mlp_output, mlp_bias = self.mlp(norm_output)

        # Second residual connection.
        if self.apply_residual_connection_post_norm:
            residual = norm_output
        else:
            residual = norm_input

        if self.drop_path is None:
            if mlp_bias is not None:
                mlp_bias = mlp_bias.expand_as(residual)
            with self.bias_dropout_add_exec_handler():
                output = bias_dropout_add_func(
                    mlp_output,
                    mlp_bias,
                    residual,
                    self.hidden_dropout)

            # Jit compiled function creates 'view' tensor. This tensor
            # potentially gets saved in the MPU checkpoint function context,
            # which rejects view tensors. While making a viewless tensor here
            # won't result in memory savings (like the data loader, or
            # p2p_communication), it serves to document the origin of this
            # 'view' tensor.
            output = core.utils.make_viewless_tensor(inp = output,
                                                     requires_grad = output.requires_grad,
                                                     keep_graph = True)

        else:
            if mlp_bias is not None:
                mlp_output = mlp_output + mlp_bias
            out = torch.nn.functional.dropout(mlp_output,
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)

        if self.layer_type == LayerType.retro_decoder_with_retriever:
            return output, retriever_output
        else:
            return output


class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

    The sole purpose of this layer is for when a standalone embedding layer
    is used (i.e., args.standalone_embedding_stage == True). In this case,
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


def _get_num_layers(args, model_type, is_decoder=False):
    """Compute the number of transformer layers resident on the current rank."""
    is_encoder_and_decoder_model = (model_type == ModelType.encoder_and_decoder)
    if model_type == ModelType.retro_encoder:
        num_layers = args.retro_encoder_layers
    elif mpu.get_pipeline_model_parallel_world_size() > 1:
        if is_encoder_and_decoder_model:
            assert args.pipeline_model_parallel_split_rank is not None

            # When a standalone embedding stage is used, a rank is taken from
            # the encoder's ranks, to be used for the encoder's embedding
            # layer. This way, the rank referenced by the 'split rank' remains
            # the same whether or not a standalone embedding stage is used.
            num_ranks_in_encoder = (
                args.pipeline_model_parallel_split_rank - 1
                if args.standalone_embedding_stage else
                args.pipeline_model_parallel_split_rank
            )
            num_ranks_in_decoder = args.transformer_pipeline_model_parallel_size - num_ranks_in_encoder
            assert args.encoder_num_layers % num_ranks_in_encoder == 0, \
                    'encoder_num_layers (%d) must be divisible by number of ranks given to encoder (%d)' % (args.encoder_num_layers, num_ranks_in_encoder)
            assert args.decoder_num_layers % num_ranks_in_decoder == 0, \
                    'decoder_num_layers (%d) must be divisible by number of ranks given to decoder (%d)' % (args.decoder_num_layers, num_ranks_in_decoder)
            if mpu.is_pipeline_stage_before_split():
                num_layers = (
                    0
                    if args.standalone_embedding_stage
                    and mpu.get_pipeline_model_parallel_rank() == 0 else
                    args.encoder_num_layers // num_ranks_in_encoder
                )
            else:
                num_layers = args.decoder_num_layers // num_ranks_in_decoder
        else:
            assert args.num_layers == args.encoder_num_layers
            assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
                'num_layers must be divisible by transformer_pipeline_model_parallel_size'

            # When a standalone embedding stage is used, all transformer layers
            # are divided among pipeline rank >= 1, while on pipeline rank 0,
            # ranks either contain the input embedding layer (virtual pp rank 0),
            # or no layers at all (virtual pp rank >= 1).
            num_layers = (
                0
                if args.standalone_embedding_stage
                and mpu.get_pipeline_model_parallel_rank() == 0 else
                args.num_layers // args.transformer_pipeline_model_parallel_size
            )
    else:
        if not is_decoder:
            num_layers = args.encoder_num_layers
        else:
            num_layers = args.decoder_num_layers
    return num_layers


def _get_layer_type(model_type, default_layer_type, retro_layer_numbers,
                    layer_number):
    args = get_args()
    if args.retro_add_retriever and layer_number in retro_layer_numbers:
        if model_type == ModelType.retro_decoder:
            return LayerType.retro_decoder_with_retriever \
                if layer_number == retro_layer_numbers[0] \
                   else LayerType.retro_decoder
        elif model_type == ModelType.retro_encoder:
            return LayerType.retro_encoder
        else:
            raise Exception("Unsupported model type, '%s'." % model_type)
    else:
        return default_layer_type


class ParallelTransformer(MegatronModule):
    """Transformer class."""

    def __init__(self, config,
                 model_type, layer_type=LayerType.encoder,
                 self_attn_mask_type=AttnMaskType.padding,
                 post_norm=True,
                 pre_process=True,
                 post_process=True,
                 drop_path_rate=0.0):
        super(ParallelTransformer, self).__init__()
        args = get_args()

        self.layer_type = layer_type
        self.model_type = model_type
        self.bf16 = config.bf16
        self.fp32_residual_connection = config.fp32_residual_connection
        self.post_norm = post_norm
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
        self.drop_path_rate = drop_path_rate
        self.transformer_impl = args.transformer_impl
        self.retro_add_retriever = args.retro_add_retriever

        # Store activation checkpoiting flag.
        self.recompute_granularity = config.recompute_granularity
        self.recompute_method = config.recompute_method
        self.recompute_num_layers = config.recompute_num_layers
        self.distribute_saved_activations = \
            config.distribute_saved_activations and not config.sequence_parallel

        self.sequence_parallel = config.sequence_parallel

        # Transformer Engine Init.
        self.transformer_engine_v_0_10 = False
        self.transformer_engine_v_0_11 = False
        self.transformer_engine_v_0_8 = False
        if self.transformer_impl == 'transformer_engine':
            global transformer_engine
            import transformer_engine
            from importlib.metadata import version
            from pkg_resources import packaging

            te_version = packaging.version.Version(version("transformer-engine"))
            if te_version >= packaging.version.Version("0.8.0"):
                self.transformer_engine_v_0_8 = True
            if te_version >= packaging.version.Version("0.10.0"):
                self.transformer_engine_v_0_10 = True
            if te_version >= packaging.version.Version("0.11.0"):
                self.transformer_engine_v_0_11 = True

            del version, packaging

            assert not args.squared_relu, "TransformerEngine does not support squared relu activation."

        self.use_fp8 = args.fp8 is not None
        self.fp8_recipe = None
        self.fp8_group = None
        if self.use_fp8:
            assert args.transformer_impl == 'transformer_engine', \
                'transformer-engine required for fp8 training and inference'
            self.fp8_group = mpu.get_amax_reduction_group()
            if args.fp8 == "e4m3":
                fp8_format = transformer_engine.common.recipe.Format.E4M3
            elif args.fp8 == "hybrid":
                fp8_format = transformer_engine.common.recipe.Format.HYBRID
            else:
                raise ValueError("The DelayedScaling recipe only supports E4M3 and HYBRID formats.")
            self.fp8_recipe = transformer_engine.common.recipe.DelayedScaling(
                margin=args.fp8_margin,
                interval=args.fp8_interval,
                fp8_format=fp8_format,
                amax_history_len=args.fp8_amax_history_len,
                amax_compute_algo=args.fp8_amax_compute_algo,
                override_linear_precision=(False, False, not args.fp8_wgrad),
            )

        self.num_microbatches_in_previous_step = -1
        self.microbatch_count = 0
        self.checkpoint_core_attention = config.recompute_granularity == 'selective'

        # Number of layers.
        self.num_layers = _get_num_layers(args, model_type,
                                          layer_type==LayerType.decoder)

        self.drop_path_rates = [
            rate.item() for rate in
            torch.linspace(0, self.drop_path_rate, config.num_layers)]

        self.retro_layer_numbers = None
        if model_type == ModelType.retro_decoder:
            retro_layer_start = 6 if config.num_layers <= 15 else 9
            self.retro_layer_numbers = \
                np.arange(retro_layer_start, args.num_layers + 1, 3).tolist()
        if model_type == ModelType.retro_encoder:
            self.retro_layer_numbers = [1]

        # Transformer layers.
        if args.retro_add_retriever:
            assert self.recompute_granularity != 'full', \
                "Full recompute not supported for Retro."
            assert args.transformer_impl == 'local', \
                "Transformer engine does not support Retro layers."
        def build_layer(layer_number):
            if args.transformer_impl == 'local':
                current_layer_type = _get_layer_type(
                    model_type, layer_type, self.retro_layer_numbers,
                    layer_number)
                return ParallelTransformerLayer(
                    config,
                    layer_number,
                    layer_type=current_layer_type,
                    self_attn_mask_type=self_attn_mask_type,
                    drop_path_rate=self.drop_path_rates[layer_number - 1])
            else:
                # This argument is only available from TE v0.10 onwards.
                extra_transformer_engine_kwargs = {}
                if self.transformer_engine_v_0_8:
                    extra_transformer_engine_kwargs["bias"] = args.add_bias_linear
                if self.transformer_engine_v_0_10:
                    extra_transformer_engine_kwargs["activation"] = "swiglu" if args.swiglu else "gelu"
                if self.transformer_engine_v_0_11:
                    extra_transformer_engine_kwargs["normalization"] = args.normalization
                return transformer_engine.pytorch.TransformerLayer(
                    config.hidden_size,
                    config.ffn_hidden_size,
                    config.num_attention_heads,
                    layernorm_epsilon=config.layernorm_epsilon,
                    hidden_dropout=config.hidden_dropout,
                    attention_dropout=config.attention_dropout,
                    init_method=config.init_method,
                    output_layer_init_method=config.output_layer_init_method,
                    layer_number=layer_number,
                    kv_channels=config.kv_channels,
                    self_attn_mask_type=self_attn_mask_type.name,
                    tp_group=mpu.get_tensor_model_parallel_group(),
                    get_rng_state_tracker=tensor_parallel.get_cuda_rng_tracker,
                    fuse_wgrad_accumulation=config.gradient_accumulation_fusion,
                    apply_query_key_layer_scaling=config.apply_query_key_layer_scaling,
                    attention_softmax_in_fp32=config.attention_softmax_in_fp32,
                    seq_length=args.seq_length,
                    micro_batch_size=args.micro_batch_size,
                    sequence_parallel=config.sequence_parallel,
                    params_dtype=config.params_dtype,
                    apply_residual_connection_post_layernorm=config.apply_residual_connection_post_layernorm,
                    output_layernorm=False,
                    layer_type="encoder",
                    drop_path_rate=self.drop_path_rates[layer_number - 1],
                    set_parallel_mode=True,
                    fuse_qkv_params=True,
                    **extra_transformer_engine_kwargs)

        if config.virtual_pipeline_model_parallel_size is not None:
            assert config.num_layers % config.virtual_pipeline_model_parallel_size == 0, \
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
            assert args.model_type != ModelType.encoder_and_decoder
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
            self.num_layers = self.num_layers // config.virtual_pipeline_model_parallel_size
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
                config.num_layers // config.virtual_pipeline_model_parallel_size) + \
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
        else:
            # Each stage gets a contiguous set of layers.
            if args.model_type == ModelType.encoder_and_decoder and \
                    mpu.get_pipeline_model_parallel_world_size() > 1:
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers

        if self.num_layers == 0:
            # When a standalone embedding stage is used (e.g.,
            # args.standalone_embedding_stage == True), virtual pipeline ranks
            # on pipeline rank 0 will have zero transformer layers assigned to
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])

            # Update dropout rate for Retro encoder.
            if model_type == ModelType.retro_encoder:
                for layer in self.layers:
                    if layer.self_attention.use_flash_attn:
                        layer.self_attention.core_attention_flash.dropout_p = \
                            torch.nn.Dropout(args.retro_encoder_attention_dropout)
                    else:
                        layer.self_attention.core_attention.attention_dropout.p =\
                            args.retro_encoder_attention_dropout
                    layer.hidden_dropout = args.retro_encoder_hidden_dropout

        if self.post_process and self.post_norm:
            # Final layer norm before output.
            self.final_norm = get_norm(config)

    def _get_layer(self, layer_number):
        return self.layers[layer_number]

    def _checkpointed_forward(self, hidden_states, attention_mask,
                              encoder_output, enc_dec_attn_mask,
                              rotary_pos_emb, is_first_microbatch):
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*args, **kwargs):
                x_, *args = args
                for index in range(start, end):
                    layer = self._get_layer(index)
                    x_ = layer(x_, *args, **kwargs)
                return x_
            return custom_forward

        te_forward_kwargs = {}
        if self.transformer_impl == 'transformer_engine':
            te_forward_kwargs['is_first_microbatch'] = is_first_microbatch
            if self.transformer_engine_v_0_10:
                te_forward_kwargs['rotary_pos_emb'] = rotary_pos_emb

        if self.recompute_method == 'uniform':
            # Uniformly divide the total number of Transformer layers and
            # checkpoint the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
                if self.transformer_impl == 'transformer_engine':
                    hidden_states = transformer_engine.pytorch.checkpoint(
                        custom(l, l + self.recompute_num_layers),
                        self.distribute_saved_activations,
                        tensor_parallel.get_cuda_rng_tracker,
                        mpu.get_tensor_model_parallel_group(),
                        hidden_states, attention_mask, encoder_output,
                        enc_dec_attn_mask, **te_forward_kwargs)
                else:
                    hidden_states = tensor_parallel.checkpoint(
                        custom(l, l + self.recompute_num_layers),
                        self.distribute_saved_activations,
                        hidden_states, attention_mask,
                        encoder_output, enc_dec_attn_mask,
                        None, None, None, None, rotary_pos_emb)

                l += self.recompute_num_layers

        elif self.recompute_method == 'block':
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
                if l < self.recompute_num_layers:
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = transformer_engine.pytorch.checkpoint(
                            custom(l, l + 1),
                            self.distribute_saved_activations,
                            tensor_parallel.get_cuda_rng_tracker,
                            mpu.get_tensor_model_parallel_group(),
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, **te_forward_kwargs)
                    else:
                        hidden_states = tensor_parallel.checkpoint(
                            custom(l, l + 1),
                            self.distribute_saved_activations,
                            hidden_states, attention_mask,
                            encoder_output, enc_dec_attn_mask,
                            None, None, None, None, rotary_pos_emb)
                else:
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = custom(l, l + 1)(
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, **te_forward_kwargs)
                    else:
                        hidden_states = custom(l, l + 1)(
                            hidden_states, attention_mask,
                            encoder_output, enc_dec_attn_mask,
                            None, None, None, None, rotary_pos_emb)
        else:
            raise ValueError("Invalid activation recompute method.")

        return hidden_states

    def set_input_tensor(self, input_tensor):
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
        self.input_tensor = input_tensor

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                retriever_input=None,
                retriever_output=None,
                retriever_attn_mask=None,
                inference_params=None,
                rotary_pos_emb=None):
        # hidden_states: [s, b, h]

        # Checks.
        if inference_params:
            assert self.recompute_granularity is None, \
                'inference does not work with activation checkpointing'

        if not self.pre_process:
            # See set_input_tensor()
            hidden_states = self.input_tensor

        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
        #
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
        hidden_states = core.utils.make_viewless_tensor(
            hidden_states,
            requires_grad=True,
            keep_graph=True,
        )

        # RNG context.
        if self.sequence_parallel:
            rng_context = tensor_parallel.get_cuda_rng_tracker().fork()
        else:
            rng_context = nullcontext()

        # Forward layers.
        with rng_context:
            # The fp8_autocast context manager is a no-op when enabled=True
            # The if...else serves to short circuit name resolution for fp8_autocast
            with transformer_engine.pytorch.fp8_autocast(
                enabled=self.use_fp8,
                fp8_recipe=self.fp8_recipe,
                fp8_group=self.fp8_group
            ) if self.use_fp8 else nullcontext():
                # Determine if the current iteration is first microbatch
                if self.num_microbatches_in_previous_step != get_num_microbatches():
                    self.microbatch_count = 0 # Reset count on new batch size rampup interval
                self.num_microbatches_in_previous_step = get_num_microbatches()
                is_first_microbatch = self.microbatch_count % get_num_microbatches() == 0

                # Forward pass.
                if self.recompute_granularity == 'full':
                    hidden_states = self._checkpointed_forward(hidden_states,
                                                               attention_mask,
                                                               encoder_output,
                                                               enc_dec_attn_mask,
                                                               rotary_pos_emb,
                                                               is_first_microbatch)
                else:
                    forward_kwargs = {
                        'encoder_output': encoder_output,
                        'enc_dec_attn_mask': enc_dec_attn_mask,
                        'inference_params': inference_params,
                    }

                    if self.transformer_impl == 'transformer_engine':
                        forward_kwargs['is_first_microbatch'] = is_first_microbatch
                        forward_kwargs['checkpoint_core_attention'] = self.checkpoint_core_attention
                        if self.transformer_engine_v_0_10:
                            forward_kwargs['rotary_pos_emb'] = rotary_pos_emb
                    else:
                        forward_kwargs['rotary_pos_emb'] = rotary_pos_emb
                        forward_kwargs['retriever_input'] = retriever_input
                        forward_kwargs['retriever_output'] = retriever_output
                        forward_kwargs['retriever_attn_mask'] = retriever_attn_mask

                    for index in range(self.num_layers):
                        layer = self._get_layer(index)

                        hidden_states = layer(
                            hidden_states,
                            attention_mask,
                            **forward_kwargs)

                        # First Retro decoder layer returns both hidden_states
                        # and retriever_output. Make retriever_output available
                        # to subsequence Retro layers.
                        if isinstance(hidden_states, tuple):
                            assert len(hidden_states) == 2
                            hidden_states, retriever_output = hidden_states
                            forward_kwargs["retriever_output"] = retriever_output

                # Skip counter update for eval and activation checkpointing
                if torch.is_grad_enabled() and self.training:
                    self.microbatch_count += 1

        # Final layer norm.
        if self.post_process and self.post_norm:
            hidden_states = self.final_norm(hidden_states)

        return hidden_states

    def load_state_dict(self, state_dict, strict=True):
        """Customize load."""

        # Handle renaming layernorm -> norm in component names
        args = get_args()
        state_dict_ = {}
        for key in state_dict.keys():
            if args.transformer_impl != "transformer_engine":
                newkey = key.replace("layernorm", "norm")
                state_dict_[newkey] = state_dict[key]
            else:
                state_dict_[key] = state_dict[key]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



