def convert_checkpoint_from_transformers_to_megatron()

in toolkits/model_checkpoints_convertor/galactica/checkpoint_reshaping_and_interoperability.py [0:0]


def convert_checkpoint_from_transformers_to_megatron(args):
    """
    Convert a checkpoint from HuggingFace Transformers to Megatron-LM. This allows converted checkpoints with variable
    tensor parallelism and pipeline parallelism sizes. It takes as input a checkpoint from HuggingFace Transformers
    which can have multiple shards.
    Args:
        args (argparse.Namespace): the arguments to the script
    """
    os.makedirs(args.save_path, exist_ok=True)
    # Search in directory above this
    sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)))
    if args.megatron_path is not None:
        sys.path.insert(0, args.megatron_path)

    try:
        from megatron.tokenizer.tokenizer import _vocab_size_with_padding
    except ModuleNotFoundError:
        print("Unable to import Megatron, please specify the path to Megatron using --megatron-path. Exiting.")
        exit(1)

    # load the transformers model state dict and config
    sub_dirs = [x for x in os.listdir(args.load_path) if x.startswith("pytorch_model")]
    if len(sub_dirs) == 1:
        checkpoint_name = "pytorch_model.bin"
        state_dict = torch.load(os.path.join(args.load_path, checkpoint_name), map_location="cpu")
    else:
        if args.model_name == "galactica-6.7b":
            num_checkpoints = len(sub_dirs) - 1
            state_dict = merge_transformers_sharded_states_7b(args.load_path, num_checkpoints)

    merged_qkv_state_dict = {}
    config = GPT2Config.from_pretrained(args.load_path)

    for layer_id in range(config.num_hidden_layers):
        q_name = 'model.decoder.layers.'+str(layer_id)+'.self_attn.q_proj.weight'
        k_name = 'model.decoder.layers.' + str(layer_id) + '.self_attn.k_proj.weight'
        v_name = 'model.decoder.layers.' + str(layer_id) + '.self_attn.v_proj.weight'
        q_weight = state_dict[q_name]
        k_weight = state_dict[k_name]
        v_weight = state_dict[v_name]
        merged_qkv_state_dict['transformer.layers.'+str(layer_id)+'.self_attn.query_key_value.weight'] = torch.cat((q_weight, k_weight, v_weight))

        q_name = 'model.decoder.layers.'+str(layer_id)+'.self_attn.q_proj.bias'
        k_name = 'model.decoder.layers.' + str(layer_id) + '.self_attn.k_proj.bias'
        v_name = 'model.decoder.layers.' + str(layer_id) + '.self_attn.v_proj.bias'
        q_bias = state_dict[q_name]
        k_bias = state_dict[k_name]
        v_bias = state_dict[v_name]
        merged_qkv_state_dict['transformer.layers.'+str(layer_id)+'.self_attn.query_key_value.bias'] = torch.cat((q_bias, k_bias, v_bias))


        merged_qkv_state_dict['transformer.layers.' + str(layer_id) + '.self_attn.dense.weight'] = \
            state_dict['model.decoder.layers.' + str(layer_id) + '.self_attn.out_proj.weight']

        merged_qkv_state_dict['transformer.layers.' + str(layer_id) + '.self_attn.dense.bias'] = \
            state_dict['model.decoder.layers.' + str(layer_id) + '.self_attn.out_proj.bias']

        merged_qkv_state_dict['transformer.layers.' + str(layer_id) + '.input_layernorm.weight'] = state_dict[
            'model.decoder.layers.' + str(layer_id) + '.self_attn_layer_norm.weight']

        merged_qkv_state_dict['transformer.layers.' + str(layer_id) + '.input_layernorm.bias'] = state_dict[
            'model.decoder.layers.' + str(layer_id) + '.self_attn_layer_norm.bias']


        merged_qkv_state_dict['transformer.layers.' + str(layer_id) + '.mlp.dense_h_to_4h.weight'] = state_dict[
            'model.decoder.layers.' + str(layer_id) + '.fc1.weight']

        merged_qkv_state_dict['transformer.layers.' + str(layer_id) + '.mlp.dense_h_to_4h.bias'] = state_dict[
            'model.decoder.layers.' + str(layer_id) + '.fc1.bias']


        merged_qkv_state_dict['transformer.layers.' + str(layer_id) + '.mlp.dense_4h_to_h.weight'] = state_dict[
            'model.decoder.layers.' + str(layer_id) + '.fc2.weight']


        merged_qkv_state_dict['transformer.layers.' + str(layer_id) + '.mlp.dense_4h_to_h.bias'] = state_dict[
            'model.decoder.layers.' + str(layer_id) + '.fc2.bias']


        merged_qkv_state_dict['transformer.layers.' + str(layer_id) + '.post_attention_layernorm.weight'] = state_dict[
            'model.decoder.layers.' + str(layer_id) + '.final_layer_norm.weight']

        merged_qkv_state_dict['transformer.layers.' + str(layer_id) + '.post_attention_layernorm.bias'] = state_dict[
            'model.decoder.layers.' + str(layer_id) + '.final_layer_norm.bias']


    merged_qkv_state_dict["transformer.word_embeddings.weight"] = state_dict['model.decoder.embed_tokens.weight']
    merged_qkv_state_dict["transformer.position_embeddings.weight"] = state_dict['model.decoder.embed_positions.weight']
    merged_qkv_state_dict["transformer.final_layernorm.weight"] = state_dict['model.decoder.final_layer_norm.weight']
    merged_qkv_state_dict["transformer.final_layernorm.bias"] = state_dict['model.decoder.final_layer_norm.bias']
    merged_qkv_state_dict["transformer.lm_head.weight"] = state_dict['lm_head.weight']
    state_dict = merged_qkv_state_dict

    # Saving config
    os.system("cp -rf "+args.load_path+"/*.json "+args.save_path)

    # Saving the tracker file
    tracker_filepath = os.path.join(args.save_path, "latest_checkpointed_iteration.txt")
    with open(tracker_filepath, "w") as f:
        f.write("release")

    # create `release` dir in args.load_path
    release_dir = os.path.join(args.save_path, "release")
    os.makedirs(release_dir, exist_ok=True)

    # megatron args
    megatron_args = {
        "orig_vocab_size": config.vocab_size,
        "hidden_size": config.hidden_size,
        "num_layers": config.num_hidden_layers,
        "num_attention_heads": config.num_attention_heads,
        "tensor_model_parallel_size": args.target_tensor_model_parallel_size,
        "pipeline_model_parallel_size": args.target_pipeline_model_parallel_size,
        "data_parallel_size": args.target_data_parallel_size,
        "make_vocab_size_divisible_by": args.make_vocab_size_divisible_by,
        "rank": 0,
        "tokenizer_type": "GPT2BPETokenizer",
    }

    margs = types.SimpleNamespace()
    for k, v in megatron_args.items():
        setattr(margs, k, v)

    # params dtype
    if args.target_params_dtype == "fp16":
        dtype = torch.float16
    elif args.target_params_dtype == "bf16":
        dtype = torch.bfloat16
    else:
        dtype = torch.float32
    setattr(margs, "params_dtype", dtype)

    # Convert.
    print("Converting")
    output_state_dict = []
    for i in range(args.target_tensor_model_parallel_size):
        output_state_dict.append({})


    # Embedding layer
    print("converting embedding layer")
    pos_embedding = state_dict["transformer.position_embeddings.weight"].to(dtype)
    word_embedding = state_dict["transformer.word_embeddings.weight"].to(dtype)
    lm_head = state_dict["transformer.lm_head.weight"].to(dtype)
    orig_vocab_size = config.vocab_size
    #padded_vocab_size = _vocab_size_with_padding(orig_vocab_size, margs)
    padded_vocab_size = orig_vocab_size
    setattr(margs, "padded_vocab_size", padded_vocab_size)
    # Cut out extra padding we don't need
    if args.extra_num_vocabs == 0:
        full_word_embed = word_embedding
        full_pos_embed = pos_embedding
        full_lm_head = lm_head
    else:
        new_embeddings = torch.nn.Embedding(args.extra_num_vocabs, word_embedding.shape[1])
        # initialize all new embeddings (in particular added tokens)
        _init_embedding_weights(new_embeddings)
        full_word_embed = torch.cat([word_embedding, new_embeddings.weight])
        full_lm_head = torch.cat([lm_head, new_embeddings.weight])

    # Split into new tensor model parallel sizes
    out_word_embed = torch.chunk(full_word_embed, args.target_tensor_model_parallel_size, dim=0)
    for i in range(args.target_tensor_model_parallel_size):

        pos_emb_dict = get_element_from_dict_by_path(
            output_state_dict[i], "model.language_model.embedding.position_embeddings"
        )
        pos_emb_dict["weight"] = full_pos_embed

        word_emb_dict = get_element_from_dict_by_path(
            output_state_dict[i], "model.language_model.embedding.word_embeddings"
        )
        word_emb_dict["weight"] = out_word_embed[i]

    out_lm_head = torch.chunk(full_lm_head, args.target_tensor_model_parallel_size, dim=0)
    for i in range(args.target_tensor_model_parallel_size):
        lm_head_dict = get_element_from_dict_by_path(
            output_state_dict[i], "model.lm_head"
        )
        lm_head_dict["weight"] = out_lm_head[i]

    # Transformer layers
    print("converting transformer layers")
    if config.num_hidden_layers % args.target_pipeline_model_parallel_size != 0:
        raise ValueError(
            f"Number of layers ({config.num_hidden_layers}) must be divisible by number of pipeline parallelism"
            f" ({args.target_pipeline_model_parallel_size})"
        )
    num_layers = config.num_hidden_layers // args.target_pipeline_model_parallel_size

    layer_re = re.compile("transformer.layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)")
    # The number of heads.
    heads = config.num_attention_heads
    # The hidden_size per head.
    hidden_size_per_head = config.hidden_size // config.num_attention_heads
    for pp_rank in range(args.target_pipeline_model_parallel_size):
        layer_offset = pp_rank * num_layers
        if pp_rank > 0:
            output_state_dict = []
            for i in range(args.target_tensor_model_parallel_size):
                output_state_dict.append({})

        for layer in range(num_layers):
            pp_layer_id = layer + layer_offset
            layers_to_copy = [
                layer_name
                for layer_name in state_dict.keys()
                if layer_name.startswith(f"transformer.layers.{pp_layer_id}.")
            ]

            for layer_name in layers_to_copy:
                m = layer_re.match(layer_name)
                # Stop if that's not a layer
                if m is None:
                    break

                # The index of the layer.
                _ = int(m.group(1))
                # The name of the operation.
                op_name = m.group(2)
                # Is it a weight or a bias?
                weight_or_bias = m.group(3)

                params = state_dict[layer_name].to(dtype)
                # handle layernorm
                if op_name.startswith("input_layernorm") or op_name.startswith("post_attention_layernorm"):
                    out_name = "input_layernorm" if op_name.endswith("input_layernorm") else "post_attention_layernorm"
                    layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}"

                # handle attention K, V, Q weights
                elif op_name.startswith("self_attn.query_key_value") and weight_or_bias == "weight":
                    # transformers stores D X (3*D) but Megatron-LM expects (3*D) X D.
                    params = transformers_to_megatron_fix_query_key_value_ordering(
                        params,
                        3.0,
                        3,
                        heads,
                        hidden_size_per_head,
                    )
                    layer_name = f"layers.{layer}.self_attention.query_key_value.{weight_or_bias}"

                # handle attention K, V, Q bias
                elif op_name.startswith("self_attn.query_key_value") and weight_or_bias == "bias":
                    params = transformers_to_megatron_fix_query_key_value_ordering(
                        params,
                        3.0,
                        3,
                        heads,
                        hidden_size_per_head,
                    )
                    layer_name = f"layers.{layer}.self_attention.query_key_value.{weight_or_bias}"

                # handle attention and mlp weights
                elif weight_or_bias == "weight":
                    out_name = transformers_to_megatron.get(op_name, None)
                    if out_name is None:
                        continue
                    #params = params.transpose(0, 1)
                    layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}"

                # handle attention and mlp bias
                elif weight_or_bias == "bias":
                    out_name = transformers_to_megatron.get(op_name, None)
                    if out_name is None:
                        continue
                    layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}"

                # skip
                else:
                    continue

                if op_name + "." + weight_or_bias in tensor_parallel_params:
                    dim = 1 if op_name in ["self_attn.dense", "mlp.dense_4h_to_h"] else 0
                    params = torch.chunk(params, args.target_tensor_model_parallel_size, dim=dim)

                for i in range(args.target_tensor_model_parallel_size):
                    params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.language_model.encoder")
                    params_dict[layer_name] = (
                        params[i] if (op_name + "." + weight_or_bias in tensor_parallel_params) else params
                    )

        if pp_rank == args.target_pipeline_model_parallel_size - 1:
            # handle final layernorm
            for weight_or_bias in ["weight", "bias"]:
                params = state_dict[f"transformer.final_layernorm.{weight_or_bias}"].to(dtype)
                layer_name = f"final_layernorm.{weight_or_bias}"
                for i in range(args.target_tensor_model_parallel_size):
                    params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.language_model.encoder")
                    params_dict[layer_name] = params

            # add the LM head
            for i in range(args.target_tensor_model_parallel_size):
                params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.word_embeddings_for_head")
                params_dict["weight"] = out_word_embed[i]

        # saving the state dict as per the tp_rank and pp_rank
        for tp_rank in range(args.target_tensor_model_parallel_size):
            output_state_dict[tp_rank]["checkpoint_version"] = 3.0
            output_state_dict[tp_rank]["args"] = margs
            checkpoint_dir = (
                f"mp_rank_{tp_rank:02d}"
                if args.target_pipeline_model_parallel_size == 1
                else f"mp_rank_{tp_rank:02d}_{pp_rank:03d}"
            )

            checkpoint_name = "model_optim_rng.pt"
            checkpoint_dir = os.path.join(release_dir, checkpoint_dir)
            os.makedirs(checkpoint_dir, exist_ok=True)
            checkpoint_path = os.path.join(checkpoint_dir, checkpoint_name)
            if args.print_checkpoint_structure:
                print(
                    f"Checkpoint structure of model state dict shard belonging to TP rank {tp_rank} and PP rank"
                    f" {pp_rank}:"
                )
                recursive_print(None, output_state_dict[tp_rank])
            torch.save(output_state_dict[tp_rank], checkpoint_path)