def save_mgmodel()

in toolkits/model_checkpoints_convertor/qwen/hf2mcore_qwen2_moe.py [0:0]


def save_mgmodel(mgmodel: GPTModel, args):

    args.tensor_model_parallel_size = args.target_tensor_model_parallel_size
    args.pipeline_model_parallel_size = args.target_pipeline_model_parallel_size
    args.expert_model_parallel_size = args.target_expert_model_parallel_size
    args.expert_tensor_parallel_size = args.target_expert_tensor_parallel_size

    if args.num_experts is not None:
        args.expert_model_parallel_size = args.target_expert_model_parallel_size

    os.makedirs(args.save, exist_ok=True)
    os.system("cp -rf " + args.load + "/*config.json " + args.save)
    os.system("cp -rf " + args.load + "/tokenizer* " + args.save)
    os.system("cp -rf " + args.load + "/merges.txt " + args.save)
    os.system("cp -rf " + args.load + "/vocab.json " + args.save)

    tracker_filepath = os.path.join(args.save, 'latest_checkpointed_iteration.txt')
    with open(tracker_filepath, "w") as f:
        f.write("release")

    head_dim = args.hidden_size // args.num_attention_heads if args.kv_channels is None else args.kv_channels
    group_per_split = args.num_query_groups // args.target_tensor_model_parallel_size

    full_model = mgmodel.state_dict_for_save_checkpoint()
    for k in list(full_model.keys()):
        if full_model[k] is None and '_extra_state' not in k:
            full_model.pop(k)
            continue
        if '_extra_state' in k and isinstance(full_model[k], torch.Tensor):
            full_model[k] = None

    if args.num_experts is not None:
        pattern = r'weight(\d+)'
        assert args.num_experts % args.expert_model_parallel_size == 0
        num_local_experts = args.num_experts // args.expert_model_parallel_size if args.num_experts else 0

    if args.target_decoder_first_pipeline_num_layers is not None:
        remained_layers = args.num_layers - args.target_decoder_first_pipeline_num_layers
        remained_stages = args.pipeline_model_parallel_size - 1
        assert remained_layers % remained_stages == 0
        pp_layers_per_stage = [ args.target_decoder_first_pipeline_num_layers] +([remained_layers // remained_stages] * remained_stages)
    else:
        pp_layers_per_stage = [args.num_layers // args.pipeline_model_parallel_size] * args.pipeline_model_parallel_size

    for (tp_rank, etp_rank, ep_rank, pp_rank) in generate_rank_group(
            args.tensor_model_parallel_size,
            args.expert_tensor_parallel_size,
            args.expert_model_parallel_size,
            args.pipeline_model_parallel_size
    ):
        model_split = {}
        layer_offset = sum(pp_layers_per_stage[:pp_rank])
        layers_to_copy = {}
        for layer in range(pp_layers_per_stage[pp_rank]):
            pp_layer_id = layer + layer_offset
            layers_to_copy[f"decoder.layers.{pp_layer_id}"] = layer
        checkpoint_name = get_checkpoint_name(
            args.save, 0, True,
            args.pipeline_model_parallel_size > 1,
            tp_rank,
            pp_rank,
            args.expert_model_parallel_size > 1,
            ep_rank
        )
        print(f'tensor_parallel & pipeline_parallel & expert_parallel, save model to {checkpoint_name}')
        for k, v in full_model.items():
            if check_layer(layers_to_copy, k):
                layer_pattern = re.compile(r'\d+')
                res = layer_pattern.findall(k)
                k = re.sub(r"decoder.layers.\d+", "decoder.layers." + str(layers_to_copy["decoder.layers." + res[0]]), k)
            elif not ("word_embeddings" in k or "output_layer" in k or "final_layernorm" in k):
                continue

            if not isinstance(v, torch.Tensor):
                target_v = v
            elif 'linear_qkv.weight' in k:
                viewed = v.view(args.num_query_groups, -1, head_dim, args.hidden_size)
                viewed = viewed[group_per_split * tp_rank: group_per_split * (tp_rank + 1)]
                target_v = viewed.view(-1, args.hidden_size)
            elif 'linear_qkv.bias' in k:
                viewed = v.view(args.num_query_groups, -1, head_dim)
                viewed = viewed[group_per_split * tp_rank: group_per_split * (tp_rank + 1)]
                target_v = viewed.view(-1)
            elif 'linear_proj' in k:
                seg = v.shape[1] // args.tensor_model_parallel_size
                target_v = v[:, seg * tp_rank: seg * (tp_rank + 1)]
            elif 'experts' in k and 'shared_experts' not in k:
                expert_rank = int(re.findall(pattern, k)[0])
                if expert_rank // num_local_experts != ep_rank:
                    continue
                expert_local_rank = expert_rank % num_local_experts
                k = k.replace(f'weight{expert_rank}', f'weight{expert_local_rank}')
                if 'linear_fc1' in k:
                    viewed = v.view(-1, args.moe_ffn_hidden_size, args.hidden_size)
                    seg = args.moe_ffn_hidden_size // args.expert_tensor_parallel_size
                    target_v = viewed[:, seg * etp_rank: seg * (etp_rank + 1), :].reshape(-1, args.hidden_size)
                elif 'linear_fc2' in k:
                    target_v = split_row_parallel(v, etp_rank, args.expert_tensor_parallel_size)
                else:
                    raise NotImplementedError
            elif 'shared_experts' in k and 'gate' not in k:
                if 'linear_fc1' in k:
                    viewed = v.view(-1, args.moe_shared_expert_intermediate_size,
                                    args.hidden_size)
                    seg = args.moe_shared_expert_intermediate_size // args.tensor_model_parallel_size
                    target_v = viewed[:, seg * tp_rank: seg * (tp_rank + 1), :].reshape(-1, args.hidden_size)
                elif 'linear_fc2' in k:
                    seg = v.shape[1] // args.tensor_model_parallel_size
                    target_v = v[:, seg * tp_rank: seg * (tp_rank + 1)]

            elif "word_embeddings" in k or "output_layer" in k:
                seg = v.shape[0] // args.tensor_model_parallel_size
                target_v = v[seg * tp_rank: seg * (tp_rank + 1)]
            else:
                target_v = v

            if "word_embeddings" in k:
                if pp_rank == 0:
                    model_split[k] = target_v
            elif "output_layer" in k or "final_layernorm" in k:
                if pp_rank == args.pipeline_model_parallel_size - 1:
                    model_split[k] = target_v
            else:
                model_split[k] = target_v
        save_state_dict(args, [model_split], checkpoint_name)

    print(f'megatron model is save to {args.save}')