def load_megatron_model()

in toolkits/model_checkpoints_convertor/deepseek/hf2mcore_deepseek_v2_moe.py [0:0]


def load_megatron_model(args):
    os.makedirs(args.save, exist_ok=True)
    os.system("cp -rf " + args.hf_ckpt_path + "/*config.json " + args.save)
    os.system("cp -rf " + args.hf_ckpt_path + "/tokenizer* " + args.save)
    os.system("cp -rf " + args.hf_ckpt_path + "/*.py " + args.save)

    os.system("cp -rf " + args.hf_ckpt_path + "/*config.json " + args.load)
    os.system("cp -rf " + args.hf_ckpt_path + "/tokenizer* " + args.load)
    os.system("cp -rf " + args.hf_ckpt_path + "/*.py " + args.load)

    model = model_provider()

    args.tensor_model_parallel_size = args.target_tensor_model_parallel_size
    args.pipeline_model_parallel_size = args.target_pipeline_model_parallel_size

    if args.num_experts is not None:
        args.expert_model_parallel_size = args.target_expert_model_parallel_size

    if args.tensor_model_parallel_size > 1:
        args.sequence_parallel = True

    model_path = args.load
    tracker_filename = get_checkpoint_tracker_filename(model_path)
    iteration, release = read_metadata(tracker_filename)
    q_head_dim = args.qk_head_dim + args.qk_pos_emb_head_dim
    group_per_split = args.num_attention_heads // args.tensor_model_parallel_size
    if args.num_experts is not None:
        pattern = r'local_experts\.(\d+)\.'
        num_local_experts = args.num_experts // args.expert_model_parallel_size
    state_dict = {}
    mid_state = defaultdict(list)
    if (
        args.tensor_model_parallel_size == 1
        and args.pipeline_model_parallel_size == 1
    ):
        checkpoint_name = get_checkpoint_name(model_path, iteration, release, None, None, None, None, None)
        state_dict = torch.load(checkpoint_name)['model']
    elif (
        args.tensor_model_parallel_size == 1
        and args.pipeline_model_parallel_size == 1
        and args.expert_model_parallel_size > 1
        and args.num_experts % args.expert_model_parallel_size == 0
    ):
        for ep_rank in range(args.expert_model_parallel_size):
            checkpoint_name = get_checkpoint_name(model_path, iteration, release, None, None, None, True, ep_rank)
            print(f'load {checkpoint_name}')
            split_state = torch.load(checkpoint_name, map_location="cpu", weights_only=False)['model']
            for k, v in split_state.items():
                if 'local_experts' in k:
                    expert_local_rank = int(re.findall(pattern, k)[0])
                    expert_rank = expert_local_rank + num_local_experts * ep_rank
                    k = k.replace(f'local_experts.{expert_local_rank}', f'local_experts.{expert_rank}')
                state_dict[k] = v
    elif (
        args.tensor_model_parallel_size >= 1
        and args.pipeline_model_parallel_size >= 1
        and args.expert_model_parallel_size >= 1
        and args.num_experts % args.expert_model_parallel_size == 0
    ):
        #assert args.num_layers % args.pipeline_model_parallel_size == 0
        if args.target_decoder_first_pipeline_num_layers is not None:
            remained_layers = args.num_layers - args.target_decoder_first_pipeline_num_layers
            remained_stages = args.pipeline_model_parallel_size - 1
            assert remained_layers % remained_stages == 0
            pp_layers_per_stage = [args.target_decoder_first_pipeline_num_layers] +([remained_layers // remained_stages] * remained_stages)
        else:
            pp_layers_per_stage = [args.num_layers // args.pipeline_model_parallel_size] * args.pipeline_model_parallel_size

        #num_layers = args.num_layers // args.pipeline_model_parallel_size
        layers_to_copy = {}
        for tp_rank in range(args.tensor_model_parallel_size):
            for ep_rank in range(args.expert_model_parallel_size):
                for pp_rank in range(args.pipeline_model_parallel_size):
                    layer_offset = sum(pp_layers_per_stage[:pp_rank])
                    for layer in range(pp_layers_per_stage[pp_rank]):
                        pp_layer_id = layer + layer_offset
                        layers_to_copy[(pp_rank, layer)] = pp_layer_id

                    if args.expert_model_parallel_size > 1:
                        checkpoint_name = get_checkpoint_name(model_path, iteration, release, True, tp_rank, pp_rank, True,
                                                              ep_rank)
                    elif args.expert_model_parallel_size == 1:
                        checkpoint_name = get_checkpoint_name(model_path, iteration, release, True, tp_rank, pp_rank,
                                                              False)
                    print(f'load {checkpoint_name}')
                    split_state = torch.load(checkpoint_name, map_location="cpu", weights_only=False)['model']
                    for k, v in split_state.items():
                        try:
                            if 'local_experts' in k:
                                local_expert_rank = int(re.findall(pattern, k)[0])
                                expert_rank = local_expert_rank + num_local_experts * ep_rank
                                k = k.replace(f'local_experts.{local_expert_rank}', f'local_experts.{expert_rank}')
                            layer_pattern = re.compile(r'\d+')
                            res = layer_pattern.findall(k)
                            tgt = re.sub(r"decoder.layers.\d+", "decoder.layers." + str(layers_to_copy[(pp_rank, int(res[0]))]), k)
                            if 'linear_proj' in k or 'linear_q_proj' in k or 'linear_q_down_proj' in k or 'linear_q_up_proj'in k or \
                                    'linear_kv_up_proj' in k or 'linear_kv_down_proj' in k or 'decoder.layers.0.mlp.linear_fc2' in k or \
                                    'decoder.layers.0.mlp.linear_fc1' in k or 'shared_experts.linear_fc1' in k or 'shared_experts.linear_fc2' in k:
                                if ep_rank ==0:
                                    mid_state[tgt].append(v)
                            else:
                                mid_state[tgt].append(v)
                        except:
                            if "word_embeddings" in k:
                                if ep_rank ==0 and pp_rank == 0:
                                    mid_state[k].append(v)
                            elif "output_layer" in k or "final_layernorm" in k:
                                if ep_rank ==0 and pp_rank == args.pipeline_model_parallel_size - 1:
                                    mid_state[k].append(v)
                            else:
                                raise ValueError(f"{k} is missing! ")

        for k, v in mid_state.items():
            if not isinstance(v[0], torch.Tensor) or 'router' in k or 'gate' in k:
                target_v = v[0]
            elif 'extra_state' in k:
                target_v = None
            elif 'word_embeddings' in k or 'output_layer' in k or 'final_layernorm' in k:
                target_v = torch.cat(v, dim=0)
            elif 'linear_proj' in k:
                target_v = torch.cat(v, dim=1)
            elif 'linear_q_proj' in k:
                viewed = [x.view(group_per_split, -1, q_head_dim, args.hidden_size) for x in v]
                target_v = torch.cat(viewed, dim=0).view(-1, args.hidden_size)
            elif 'linear_kv_up_proj' in k:
                viewed = [x.view(group_per_split, -1, q_head_dim - args.qk_pos_emb_head_dim + args.v_head_dim, args.kv_lora_rank) for x in v]
                target_v = torch.cat(viewed, dim=0).view(-1, args.kv_lora_rank)
            elif 'linear_q_up_proj' in k:
                target_v = v[0]
            elif 'linear_q_down_proj' in k:
                target_v = v[0]
            elif 'linear_kv_down_proj' in k:
                target_v = v[0]
            elif 'linear_fc1' in k:
                viewed = [x.view(2, -1, args.hidden_size) for x in v]
                target_v = torch.cat(viewed, dim=1).view(-1, args.hidden_size)
            elif 'linear_fc2' in k:
                target_v = torch.cat(v, dim=1)
            elif 'input_layernorm' in k:
                target_v = v[0]
            elif 'q_layernorm' in k:
                target_v = v[0]
            elif 'kv_layernorm' in k:
                target_v = v[0]
            elif 'pre_mlp_layernorm' in k:
                target_v = v[0]
            else:
                raise ValueError(f"{k} is missing!")
            state_dict[k] = target_v

    else:
        raise ValueError('not support yet')

    model.load_state_dict(state_dict, strict=False)
    return model