megatron_patch/generation/api.py (170 lines of code) (raw):

# Copyright (c) 2023 Alibaba PAI and Nvidia Megatron-LM Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from megatron.core import mpu from megatron.text_generation.communication import broadcast_float_list from .generation import beam_search_and_return_on_first_stage from .generation import generate_tokens_probs_and_return_on_first_stage from .generation import score_and_return_on_first_stage from .tokenization import detokenize_generations, tokenize_prompts def generate_and_post_process(model, prompts=None, tokens_to_generate=0, return_output_log_probs=False, top_k_sampling=0, top_p_sampling=0.0, top_p_decay=0.0, top_p_bound=0.0, temperature=1.0, add_BOS=False, use_eod_token_for_early_termination=True, stop_on_double_eol=False, stop_on_eol=False, prevent_newline_after_colon=False, random_seed=-1): """ Run inference and post-process outputs, i.e., detokenize, move to cpu and convert to list. Args: model (torch.nn.Module): The model used for text generation. prompts (List[str], optional): A list of prompts to generate text from. tokens_to_generate (int): The maximum number of tokens to generate. return_output_log_probs (bool): A flag indicating whether to return the output log probabilities for each generated token. top_k_sampling (int): The value of k for top-k sampling. top_p_sampling (float): The value of p for top-p sampling. top_p_decay (float): The amount by which to decay the value of p for each token generated. top_p_bound (float): The minimum value of p for top-p sampling. temperature (float): The temperature value to apply during sampling. add_BOS (bool): A flag indicating whether to add a beginning-of-sentence token to the generated output. use_eod_token_for_early_termination (bool): A flag indicating whether to use the end-of-document token for early termination. stop_on_double_eol (bool): A flag indicating whether to stop generating text when a double end-of-line token is generated. stop_on_eol (bool): A flag indicating whether to stop generating text when an end-of-line token is generated. prevent_newline_after_colon (bool): A flag indicating whether to prevent newline characters after a colon. random_seed (int): The random seed to use for text generation. Returns: Tuple[List[str], List[str], List[List[float]], List[int]]: A tuple containing the following elements: - prompts_plus_generations (List[str]): A list of prompts followed by the generated text. - prompts_plus_generations_segments (List[str]): A list of segments corresponding to each prompt and generated text. - output_log_probs (List[List[float]]): The output log probabilities for each generated token (if return_output_log_probs is True). - tokens (List[int]): The generated tokens. """ # Main inference. tokens, lengths, output_log_probs = generate( model, prompts=prompts, tokens_to_generate=tokens_to_generate, return_output_log_probs=return_output_log_probs, top_k_sampling=top_k_sampling, top_p_sampling=top_p_sampling, top_p_decay=top_p_decay, top_p_bound=top_p_bound, temperature=temperature, add_BOS=add_BOS, use_eod_token_for_early_termination=use_eod_token_for_early_termination, stop_on_double_eol=stop_on_double_eol, stop_on_eol=stop_on_eol, prevent_newline_after_colon=prevent_newline_after_colon, random_seed=random_seed) # Only post-process on first stage. if mpu.is_pipeline_first_stage(): tokens, prompts_plus_generations, prompts_plus_generations_segments = \ detokenize_generations(tokens, lengths, True) if return_output_log_probs: output_log_probs = output_log_probs.cpu().numpy().tolist() for i, (prob, seg) in enumerate( zip(output_log_probs, prompts_plus_generations_segments)): output_log_probs[i] = prob[:len(seg) - 1] return prompts_plus_generations, prompts_plus_generations_segments, \ output_log_probs, tokens return None def generate(model, prompts=None, tokens_to_generate=0, return_output_log_probs=False, top_k_sampling=0, top_p_sampling=0.0, top_p_decay=0.0, top_p_bound=0.0, temperature=1.0, add_BOS=False, use_eod_token_for_early_termination=True, stop_on_double_eol=False, stop_on_eol=False, prevent_newline_after_colon=False, random_seed=-1): """ Given prompts and input parameters, run inference and return the generated tokens, lengths, and output log probabilities. Args: model (torch.nn.Module): The model used for text generation. prompts (List[str], optional): A list of prompts to generate text from. tokens_to_generate (int): The maximum number of tokens to generate. return_output_log_probs (bool): A flag indicating whether to return the output log probabilities for each generated token. top_k_sampling (int): The value of k for top-k sampling. top_p_sampling (float): The value of p for top-p sampling. top_p_decay (float): The amount by which to decay the value of p for each token generated. top_p_bound (float): The minimum value of p for top-p sampling. temperature (float): The temperature value to apply during sampling. add_BOS (bool): A flag indicating whether to add a beginning-of-sentence token to the generated output. use_eod_token_for_early_termination (bool): A flag indicating whether to use the end-of-document token for early termination. stop_on_double_eol (bool): A flag indicating whether to stop generating text when a double end-of-line token is generated. stop_on_eol (bool): A flag indicating whether to stop generating text when an end-of-line token is generated. prevent_newline_after_colon (bool): A flag indicating whether to prevent newline characters after a colon. random_seed (int): The random seed to use for text generation. Returns: Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: A tuple containing the following elements: - tokens (torch.Tensor): The prompt plus generated tokens. - lengths (torch.Tensor): The lengths of the prompt plus the generated tokens. - output_log_probs (torch.Tensor): The output log probabilities for each generated token. """ # Make sure input params are avaialble to all ranks. values = [ tokens_to_generate, return_output_log_probs, top_k_sampling, top_p_sampling, top_p_decay, top_p_bound, temperature, add_BOS, use_eod_token_for_early_termination, stop_on_double_eol, stop_on_eol, prevent_newline_after_colon, random_seed ] values_float_tensor = broadcast_float_list(len(values), float_list=values) tokens_to_generate = int(values_float_tensor[0].item()) return_output_log_probs = bool(values_float_tensor[1].item()) top_k_sampling = int(values_float_tensor[2].item()) top_p_sampling = values_float_tensor[3].item() top_p_decay = values_float_tensor[4].item() top_p_bound = values_float_tensor[5].item() temperature = values_float_tensor[6].item() add_BOS = bool(values_float_tensor[7].item()) use_eod_token_for_early_termination = bool(values_float_tensor[8].item()) stop_on_double_eol = bool(values_float_tensor[9].item()) stop_on_eol = bool(values_float_tensor[10].item()) prevent_newline_after_colon = bool(values_float_tensor[11].item()) random_seed = int(values_float_tensor[12].item()) if random_seed != -1: torch.random.manual_seed(random_seed) # Tokenize prompts and get the batch. # Note that these tensors are broadcaseted to all ranks. if torch.distributed.get_rank() == 0: assert prompts is not None context_tokens_tensor, context_length_tensor = tokenize_prompts( prompts=prompts, tokens_to_generate=tokens_to_generate, add_BOS=add_BOS) if tokens_to_generate == 0: return score_and_return_on_first_stage(model, context_tokens_tensor, context_length_tensor) # Main inference function. # Note that the outputs are available on the first stage. return generate_tokens_probs_and_return_on_first_stage( model, context_tokens_tensor, context_length_tensor, return_output_log_probs=return_output_log_probs, top_k=top_k_sampling, top_p=top_p_sampling, top_p_decay=top_p_decay, top_p_bound=top_p_bound, temperature=temperature, use_eod_token_for_early_termination=use_eod_token_for_early_termination, stop_on_double_eol=stop_on_double_eol, stop_on_eol=stop_on_eol, prevent_newline_after_colon=prevent_newline_after_colon) def beam_search_and_post_process(model, prompts=None, tokens_to_generate=0, beam_size=0, add_BOS=False, stop_token=50256, num_return_gen=1, length_penalty=1, prevent_newline_after_colon=False): """ Run beam search and post-process outputs, i.e., detokenize, move to cpu and convert to list. Args: model (torch.nn.Module): The model used for beam search. prompts (List[List[int]], optional): List of prompts. tokens_to_generate (int, optional): Number of tokens to generate. beam_size (int, optional): Beam size for beam search. add_BOS (bool, optional): Whether to add the BOS token to the prompt. stop_token (int, optional): Token that indicates the end of generation. num_return_gen (int, optional): Number of generated sequences to return. length_penalty (float, optional): Length penalty for beam search. prevent_newline_after_colon (bool, optional): Whether to prevent newline after a colon. Defaults to False. Returns: Tuple[List[List[int]], List[List[int]], List[float]]: A tuple containing the post-processed generations, generation segments, and scores. """ # Main inference. tokens, scores = beam_search( model, prompts=prompts, tokens_to_generate=tokens_to_generate, beam_size=beam_size, add_BOS=add_BOS, stop_token=stop_token, num_return_gen=num_return_gen, length_penalty=length_penalty, prevent_newline_after_colon=prevent_newline_after_colon) # Only post-process on first stage. if mpu.is_pipeline_first_stage(): lengths = tokens.size(1) * torch.ones( beam_size, dtype=torch.int64, device=torch.cuda.current_device()) tokens, prompts_plus_generations, prompts_plus_generations_segments = detokenize_generations( tokens, lengths, True) scores = scores.cpu().numpy().tolist() return prompts_plus_generations, prompts_plus_generations_segments, scores return None def beam_search(model, prompts=None, tokens_to_generate=0, beam_size=0, add_BOS=False, stop_token=50256, num_return_gen=1, length_penalty=1, prevent_newline_after_colon=False): """ Perform beam search to generate sequences. Args: model (torch.nn.Module): The model used for beam search. prompts (List[List[int]], optional): List of prompts, where each prompt is a list of token ids. tokens_to_generate (int, optional): Number of tokens to generate. beam_size (int, optional): Beam size for beam search. add_BOS (bool, optional): Whether to add the BOS token to the prompt. stop_token (int, optional): Token that indicates the end of generation. num_return_gen (int, optional): Number of generated sequences to return. length_penalty (float, optional): Length penalty for beam search. prevent_newline_after_colon (bool, optional): Whether to prevent newline. Returns: torch.Tensor: The generated tokens. """ # Make sure input params are avaialble to all ranks. values = [ tokens_to_generate, beam_size, add_BOS, stop_token, num_return_gen, length_penalty, prevent_newline_after_colon ] values_float_tensor = broadcast_float_list(len(values), float_list=values) tokens_to_generate = int(values_float_tensor[0].item()) beam_size = int(values_float_tensor[1].item()) add_BOS = bool(values_float_tensor[2].item()) stop_token = int(values_float_tensor[3].item()) num_return_gen = int(values_float_tensor[4].item()) length_penalty = values_float_tensor[5].item() prevent_newline_after_colon = values_float_tensor[6].item() context_tokens_tensor, context_length_tensor = tokenize_prompts( prompts=prompts, tokens_to_generate=tokens_to_generate, add_BOS=add_BOS) return beam_search_and_return_on_first_stage( model, context_tokens_tensor, context_length_tensor, beam_size, stop_token=stop_token, num_return_gen=num_return_gen, length_penalty=length_penalty, prevent_newline_after_colon=prevent_newline_after_colon)