megatron_patch/generation/api.py (170 lines of code) (raw):
# Copyright (c) 2023 Alibaba PAI and Nvidia Megatron-LM Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from megatron.core import mpu
from megatron.text_generation.communication import broadcast_float_list
from .generation import beam_search_and_return_on_first_stage
from .generation import generate_tokens_probs_and_return_on_first_stage
from .generation import score_and_return_on_first_stage
from .tokenization import detokenize_generations, tokenize_prompts
def generate_and_post_process(model,
prompts=None,
tokens_to_generate=0,
return_output_log_probs=False,
top_k_sampling=0,
top_p_sampling=0.0,
top_p_decay=0.0,
top_p_bound=0.0,
temperature=1.0,
add_BOS=False,
use_eod_token_for_early_termination=True,
stop_on_double_eol=False,
stop_on_eol=False,
prevent_newline_after_colon=False,
random_seed=-1):
"""
Run inference and post-process outputs, i.e., detokenize,
move to cpu and convert to list.
Args:
model (torch.nn.Module): The model used for text generation.
prompts (List[str], optional): A list of prompts to generate text from.
tokens_to_generate (int): The maximum number of tokens to generate.
return_output_log_probs (bool): A flag indicating whether to return the output log probabilities for each generated token.
top_k_sampling (int): The value of k for top-k sampling.
top_p_sampling (float): The value of p for top-p sampling.
top_p_decay (float): The amount by which to decay the value of p for each token generated.
top_p_bound (float): The minimum value of p for top-p sampling.
temperature (float): The temperature value to apply during sampling.
add_BOS (bool): A flag indicating whether to add a beginning-of-sentence token to the generated output.
use_eod_token_for_early_termination (bool): A flag indicating whether to use the end-of-document token for early termination.
stop_on_double_eol (bool): A flag indicating whether to stop generating text when a double end-of-line token is generated.
stop_on_eol (bool): A flag indicating whether to stop generating text when an end-of-line token is generated.
prevent_newline_after_colon (bool): A flag indicating whether to prevent newline characters after a colon.
random_seed (int): The random seed to use for text generation.
Returns:
Tuple[List[str], List[str], List[List[float]], List[int]]: A tuple containing the following elements:
- prompts_plus_generations (List[str]): A list of prompts followed by the generated text.
- prompts_plus_generations_segments (List[str]): A list of segments corresponding to each prompt and generated text.
- output_log_probs (List[List[float]]): The output log probabilities for each generated token (if return_output_log_probs is True).
- tokens (List[int]): The generated tokens.
"""
# Main inference.
tokens, lengths, output_log_probs = generate(
model,
prompts=prompts,
tokens_to_generate=tokens_to_generate,
return_output_log_probs=return_output_log_probs,
top_k_sampling=top_k_sampling,
top_p_sampling=top_p_sampling,
top_p_decay=top_p_decay,
top_p_bound=top_p_bound,
temperature=temperature,
add_BOS=add_BOS,
use_eod_token_for_early_termination=use_eod_token_for_early_termination,
stop_on_double_eol=stop_on_double_eol,
stop_on_eol=stop_on_eol,
prevent_newline_after_colon=prevent_newline_after_colon,
random_seed=random_seed)
# Only post-process on first stage.
if mpu.is_pipeline_first_stage():
tokens, prompts_plus_generations, prompts_plus_generations_segments = \
detokenize_generations(tokens, lengths, True)
if return_output_log_probs:
output_log_probs = output_log_probs.cpu().numpy().tolist()
for i, (prob, seg) in enumerate(
zip(output_log_probs, prompts_plus_generations_segments)):
output_log_probs[i] = prob[:len(seg) - 1]
return prompts_plus_generations, prompts_plus_generations_segments, \
output_log_probs, tokens
return None
def generate(model,
prompts=None,
tokens_to_generate=0,
return_output_log_probs=False,
top_k_sampling=0,
top_p_sampling=0.0,
top_p_decay=0.0,
top_p_bound=0.0,
temperature=1.0,
add_BOS=False,
use_eod_token_for_early_termination=True,
stop_on_double_eol=False,
stop_on_eol=False,
prevent_newline_after_colon=False,
random_seed=-1):
"""
Given prompts and input parameters, run inference and return the generated tokens,
lengths, and output log probabilities.
Args:
model (torch.nn.Module): The model used for text generation.
prompts (List[str], optional): A list of prompts to generate text from.
tokens_to_generate (int): The maximum number of tokens to generate.
return_output_log_probs (bool): A flag indicating whether to return the output log probabilities for each generated token.
top_k_sampling (int): The value of k for top-k sampling.
top_p_sampling (float): The value of p for top-p sampling.
top_p_decay (float): The amount by which to decay the value of p for each token generated.
top_p_bound (float): The minimum value of p for top-p sampling.
temperature (float): The temperature value to apply during sampling.
add_BOS (bool): A flag indicating whether to add a beginning-of-sentence token to the generated output.
use_eod_token_for_early_termination (bool): A flag indicating whether to use the end-of-document token for early termination.
stop_on_double_eol (bool): A flag indicating whether to stop generating text when a double end-of-line token is generated.
stop_on_eol (bool): A flag indicating whether to stop generating text when an end-of-line token is generated.
prevent_newline_after_colon (bool): A flag indicating whether to prevent newline characters after a colon.
random_seed (int): The random seed to use for text generation.
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: A tuple containing the following elements:
- tokens (torch.Tensor): The prompt plus generated tokens.
- lengths (torch.Tensor): The lengths of the prompt plus the generated tokens.
- output_log_probs (torch.Tensor): The output log probabilities for each generated token.
"""
# Make sure input params are avaialble to all ranks.
values = [
tokens_to_generate, return_output_log_probs, top_k_sampling,
top_p_sampling, top_p_decay, top_p_bound, temperature, add_BOS,
use_eod_token_for_early_termination, stop_on_double_eol, stop_on_eol,
prevent_newline_after_colon, random_seed
]
values_float_tensor = broadcast_float_list(len(values), float_list=values)
tokens_to_generate = int(values_float_tensor[0].item())
return_output_log_probs = bool(values_float_tensor[1].item())
top_k_sampling = int(values_float_tensor[2].item())
top_p_sampling = values_float_tensor[3].item()
top_p_decay = values_float_tensor[4].item()
top_p_bound = values_float_tensor[5].item()
temperature = values_float_tensor[6].item()
add_BOS = bool(values_float_tensor[7].item())
use_eod_token_for_early_termination = bool(values_float_tensor[8].item())
stop_on_double_eol = bool(values_float_tensor[9].item())
stop_on_eol = bool(values_float_tensor[10].item())
prevent_newline_after_colon = bool(values_float_tensor[11].item())
random_seed = int(values_float_tensor[12].item())
if random_seed != -1:
torch.random.manual_seed(random_seed)
# Tokenize prompts and get the batch.
# Note that these tensors are broadcaseted to all ranks.
if torch.distributed.get_rank() == 0:
assert prompts is not None
context_tokens_tensor, context_length_tensor = tokenize_prompts(
prompts=prompts,
tokens_to_generate=tokens_to_generate,
add_BOS=add_BOS)
if tokens_to_generate == 0:
return score_and_return_on_first_stage(model, context_tokens_tensor,
context_length_tensor)
# Main inference function.
# Note that the outputs are available on the first stage.
return generate_tokens_probs_and_return_on_first_stage(
model,
context_tokens_tensor,
context_length_tensor,
return_output_log_probs=return_output_log_probs,
top_k=top_k_sampling,
top_p=top_p_sampling,
top_p_decay=top_p_decay,
top_p_bound=top_p_bound,
temperature=temperature,
use_eod_token_for_early_termination=use_eod_token_for_early_termination,
stop_on_double_eol=stop_on_double_eol,
stop_on_eol=stop_on_eol,
prevent_newline_after_colon=prevent_newline_after_colon)
def beam_search_and_post_process(model,
prompts=None,
tokens_to_generate=0,
beam_size=0,
add_BOS=False,
stop_token=50256,
num_return_gen=1,
length_penalty=1,
prevent_newline_after_colon=False):
"""
Run beam search and post-process outputs, i.e., detokenize,
move to cpu and convert to list.
Args:
model (torch.nn.Module): The model used for beam search.
prompts (List[List[int]], optional): List of prompts.
tokens_to_generate (int, optional): Number of tokens to generate.
beam_size (int, optional): Beam size for beam search.
add_BOS (bool, optional): Whether to add the BOS token to the prompt.
stop_token (int, optional): Token that indicates the end of generation.
num_return_gen (int, optional): Number of generated sequences to return.
length_penalty (float, optional): Length penalty for beam search.
prevent_newline_after_colon (bool, optional): Whether to prevent newline after a colon. Defaults to False.
Returns:
Tuple[List[List[int]], List[List[int]], List[float]]: A tuple containing
the post-processed generations, generation segments, and scores.
"""
# Main inference.
tokens, scores = beam_search(
model,
prompts=prompts,
tokens_to_generate=tokens_to_generate,
beam_size=beam_size,
add_BOS=add_BOS,
stop_token=stop_token,
num_return_gen=num_return_gen,
length_penalty=length_penalty,
prevent_newline_after_colon=prevent_newline_after_colon)
# Only post-process on first stage.
if mpu.is_pipeline_first_stage():
lengths = tokens.size(1) * torch.ones(
beam_size, dtype=torch.int64, device=torch.cuda.current_device())
tokens, prompts_plus_generations, prompts_plus_generations_segments = detokenize_generations(
tokens, lengths, True)
scores = scores.cpu().numpy().tolist()
return prompts_plus_generations, prompts_plus_generations_segments, scores
return None
def beam_search(model,
prompts=None,
tokens_to_generate=0,
beam_size=0,
add_BOS=False,
stop_token=50256,
num_return_gen=1,
length_penalty=1,
prevent_newline_after_colon=False):
"""
Perform beam search to generate sequences.
Args:
model (torch.nn.Module): The model used for beam search.
prompts (List[List[int]], optional): List of prompts, where each prompt is a list of token ids.
tokens_to_generate (int, optional): Number of tokens to generate.
beam_size (int, optional): Beam size for beam search.
add_BOS (bool, optional): Whether to add the BOS token to the prompt.
stop_token (int, optional): Token that indicates the end of generation.
num_return_gen (int, optional): Number of generated sequences to return.
length_penalty (float, optional): Length penalty for beam search.
prevent_newline_after_colon (bool, optional): Whether to prevent newline.
Returns:
torch.Tensor: The generated tokens.
"""
# Make sure input params are avaialble to all ranks.
values = [
tokens_to_generate, beam_size, add_BOS, stop_token, num_return_gen,
length_penalty, prevent_newline_after_colon
]
values_float_tensor = broadcast_float_list(len(values), float_list=values)
tokens_to_generate = int(values_float_tensor[0].item())
beam_size = int(values_float_tensor[1].item())
add_BOS = bool(values_float_tensor[2].item())
stop_token = int(values_float_tensor[3].item())
num_return_gen = int(values_float_tensor[4].item())
length_penalty = values_float_tensor[5].item()
prevent_newline_after_colon = values_float_tensor[6].item()
context_tokens_tensor, context_length_tensor = tokenize_prompts(
prompts=prompts,
tokens_to_generate=tokens_to_generate,
add_BOS=add_BOS)
return beam_search_and_return_on_first_stage(
model,
context_tokens_tensor,
context_length_tensor,
beam_size,
stop_token=stop_token,
num_return_gen=num_return_gen,
length_penalty=length_penalty,
prevent_newline_after_colon=prevent_newline_after_colon)