megatron_patch/model/deepseek_v2/transformer_block.py (377 lines of code) (raw):

# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. from contextlib import nullcontext from dataclasses import dataclass from typing import List, Optional, Union import torch from torch import Tensor from megatron.core import InferenceParams, parallel_state, tensor_parallel from megatron.core.dist_checkpointing.mapping import ShardedStateDict from megatron.core.dist_checkpointing.utils import replace_prefix_for_sharding from megatron.core.fusions.fused_layer_norm import FusedLayerNorm from megatron.core.packed_seq_params import PackedSeqParams from megatron.core.transformer.module import MegatronModule from megatron.core.transformer.spec_utils import ModuleSpec, build_module from megatron.core.transformer.transformer_config import TransformerConfig from megatron.core.transformer.utils import sharded_state_dict_default from megatron.core.utils import is_te_min_version, make_viewless_tensor from .transformer_layer import BaseTransformerLayer try: from megatron.core.extensions.transformer_engine import ( TEDelayedScaling, TENorm, get_cpu_offload_context, te_checkpoint, ) HAVE_TE = True LayerNormImpl = TENorm except ImportError: HAVE_TE = False get_cpu_offload_context = None try: import apex # pylint: disable=unused-import LayerNormImpl = FusedLayerNorm except ImportError: from megatron.core.transformer.torch_layer_norm import WrappedTorchLayerNorm LayerNormImpl = WrappedTorchLayerNorm def get_num_layers_to_build(config: TransformerConfig) -> int: """ Determine the number of transformer layers to build for the current pipeline stage. Args: config (TransformerConfig): Configuration object containing transformer model parameters. Returns: int: The number of layers to be built for the current pipeline stage. """ if config.first_pipeline_num_layers is not None or config.last_pipeline_num_layers is not None: assert ( parallel_state.get_virtual_pipeline_model_parallel_world_size() is None ), "Uneven number of layer not compatible with interleaved pipeline schedule" # Number of layers to distribute over rest of pipeline stages layers_to_distribute = config.num_layers # Number of pipeline stages left for distributing transformer layers pipeline_stages_left = parallel_state.get_pipeline_model_parallel_world_size() if config.first_pipeline_num_layers is not None: layers_to_distribute -= config.first_pipeline_num_layers pipeline_stages_left -= 1 if parallel_state.is_pipeline_first_stage(): return config.first_pipeline_num_layers if config.last_pipeline_num_layers is not None: layers_to_distribute -= config.last_pipeline_num_layers pipeline_stages_left -= 1 if parallel_state.is_pipeline_last_stage(): return config.last_pipeline_num_layers assert ( layers_to_distribute % pipeline_stages_left == 0 ), "With uneven pipelineing the left over layers must be divisible by left over stages" num_layers_per_pipeline_rank = layers_to_distribute // pipeline_stages_left else: pipeline_ranks = config.pipeline_model_parallel_size num_layers_per_pipeline_rank = config.num_layers // pipeline_ranks if parallel_state.get_virtual_pipeline_model_parallel_world_size() is not None: # Interleaved pipeline parallelism: # Number of layers in each model chunk is the number of layers in the stage, # divided by the number of model chunks in a stage. # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of # layers to stages like (each list is a model chunk): # Stage 0: [0] [2] [4] [6] # Stage 1: [1] [3] [5] [7] # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of # layers to stages like (each list is a model chunk): # Stage 0: [0, 1] [4, 5] # Stage 1: [2, 3] [6, 7] vp_size = parallel_state.get_virtual_pipeline_model_parallel_world_size() num_layers_per_virtual_rank = num_layers_per_pipeline_rank // vp_size num_layers_to_build = num_layers_per_virtual_rank else: # Non-interleaved pipeline parallelism: # Each stage gets a contiguous set of layers. num_layers_to_build = num_layers_per_pipeline_rank return num_layers_to_build @dataclass class TransformerBlockSubmodules: """ Dataclass for specifying the submodules of a transformer block. This class defines the structure for configuring the layers and normalization within a transformer block, allowing for flexible and customizable architecture designs. Args: layer_specs (List[ModuleSpec], optional): A list of module specifications for the layers within the transformer block. Each specification typically defines a complete transformer layer (e.g., self-attention, feed-forward network). layer_norm (Optional[Union[ModuleSpec, torch.nn.Module]], optional): Specification or instance of the layer normalization to be applied. """ layer_specs: List[ModuleSpec] = None layer_norm: Optional[Union[ModuleSpec, torch.nn.Module]] = None def _get_block_submodules( config: TransformerConfig, spec: Union[TransformerBlockSubmodules, ModuleSpec] ) -> TransformerBlockSubmodules: """ Retrieve or construct TransformerBlockSubmodules based on the provided specification. Args: config (TransformerConfig): Configuration object for the transformer model. spec (Union[TransformerBlockSubmodules, ModuleSpec]): Specification for the transformer block submodules. Can be either a TransformerBlockSubmodules instance or a ModuleSpec. Returns: TransformerBlockSubmodules: The submodules for the transformer block. """ # Transformer block submodules. if isinstance(spec, TransformerBlockSubmodules): return spec # ModuleSpec here is generally assumed to be for a transformer layer that # is implemented in `transformer_layer.py` or if it subclasses # `BaseTransformerLayer` from the `transformer_layer.py` file. elif isinstance(spec, ModuleSpec): if issubclass(spec.module, TransformerBlock): return spec.submodules elif issubclass(spec.module, BaseTransformerLayer): num_layers = get_num_layers_to_build(config) return TransformerBlockSubmodules( layer_specs=[spec] * num_layers, layer_norm=LayerNormImpl ) else: raise Exception(f"specialize for {spec.module.__name__}.") else: raise Exception(f"specialize for {type(spec).__name__}.") class TransformerBlock(MegatronModule): """Transformer class.""" def __init__( self, config: TransformerConfig, spec: Union[TransformerBlockSubmodules, ModuleSpec], post_layer_norm: bool = True, pre_process: bool = True, post_process: bool = True, ): super().__init__(config=config) self.submodules = _get_block_submodules(config, spec) self.post_layer_norm = post_layer_norm self.pre_process = pre_process self.post_process = post_process # Dictionary to store CUDA graphs. Number of items in the dictionary = len(self.layers). # Item `i` in the dictionary is a list of `N` CUDA graphs for layer 'i' where N is the # number of microbatches. Multiple CUDA graphs per layer is required to support # pipelining which requires running FWD graph of multiple microbatches before BWD graph. # To enable CUDA graph, this dictionary should be populated in the model training script # with the graphs returned by make_graphed_callables API before the first trainng step. self.cuda_graphs = {} self.current_microbatch = -1 # required for pipeline parallel schedules self.input_tensor = None self.checkpoint_core_attention = self.config.recompute_granularity == 'selective' if get_cpu_offload_context is not None: (self.offload_context, self.group_prefetch_offload_commit_async) = ( get_cpu_offload_context( self.config.cpu_offloading, self.config.cpu_offloading_num_layers, self.config.num_layers, self.config.cpu_offloading_activations, self.config.cpu_offloading_weights, ) ) self.config._cpu_offloading_context = ( self.offload_context if self.config.cpu_offloading else None ) else: assert ( self.config.cpu_offloading is False ), "CPU Offloading is enabled when TE is not present" self.offload_context, self.group_prefetch_offload_commit_async = nullcontext(), None self.config._cpu_offloading_context = None self._build_layers() self.num_layers_per_pipeline_rank = len(self.layers) self.tp_only_amax_red = config.tp_only_amax_red def _build_layers(self): # Transformer layers. # @jcasper can we improve how we deal with layer_number? # currently it's only used in CoreAttention? # if self.apply_query_key_layer_scaling: # coeff = self.layer_number # self.norm_factor *= coeff def build_layer(layer_spec, layer_number): return build_module(layer_spec, config=self.config, layer_number=layer_number) # offset is implicit in TransformerLayer self.layers = torch.nn.ModuleList( [ build_layer(layer_spec, i + 1) for i, layer_spec in enumerate(self.submodules.layer_specs) ] ) # @TODO: add back standalone_embedding_stage (see issue #293) # In pipeline parallelism, we want to add this LN only to the last stage of the pipeline # self.post_process and self.post_layer_norm guide this behavior if self.submodules.layer_norm and self.post_process and self.post_layer_norm: self.final_layernorm = build_module( self.submodules.layer_norm, config=self.config, hidden_size=self.config.hidden_size, eps=self.config.layernorm_epsilon, ) else: self.final_layernorm = None # Either this or nn.Identity def _get_layer(self, layer_number: int): return self.layers[layer_number] def _checkpointed_forward( self, hidden_states: Tensor, attention_mask: Tensor, context: Tensor, context_mask: Tensor, rotary_pos_emb: Tensor, packed_seq_params: PackedSeqParams, ): """Forward method with activation checkpointing.""" def custom(start: int, end: int): def custom_forward( hidden_states, attention_mask, context, context_mask, rotary_pos_emb ): for index in range(start, end): layer = self._get_layer(index) hidden_states, context = layer( hidden_states=hidden_states, attention_mask=attention_mask, context=context, context_mask=context_mask, rotary_pos_emb=rotary_pos_emb, inference_params=None, packed_seq_params=packed_seq_params, ) return hidden_states, context return custom_forward def checkpoint_handler(forward_func): """Determines whether to use the `te_checkpoint` or `tensor_parallel.checkpoint`""" if self.config.fp8: return te_checkpoint( forward_func, self.config.distribute_saved_activations, tensor_parallel.random.get_cuda_rng_tracker, parallel_state.get_tensor_model_parallel_group(), hidden_states, attention_mask, context, context_mask, rotary_pos_emb, ) else: return tensor_parallel.checkpoint( forward_func, self.config.distribute_saved_activations, hidden_states, attention_mask, context, context_mask, rotary_pos_emb, ) if self.config.recompute_method == 'uniform': # Uniformly divide the total number of Transformer layers and checkpoint # the input activation of each divided chunk. # A method to further reduce memory usage reducing checkpoints. layer_idx = 0 while layer_idx < self.num_layers_per_pipeline_rank: hidden_states, context = checkpoint_handler( custom(layer_idx, layer_idx + self.config.recompute_num_layers) ) layer_idx += self.config.recompute_num_layers elif self.config.recompute_method == 'block': # Checkpoint the input activation of only a set number of individual # Transformer layers and skip the rest. # A method fully use the device memory removing redundant re-computation. recompute_skip_num_layers = 0 for layer_idx in range(self.num_layers_per_pipeline_rank): # Skip recomputation when input grad computation is not needed. # Need to have at least one input tensor with gradient computation # for re-enterant autograd engine. if self.config.fp8 and not hidden_states.requires_grad: recompute_skip_num_layers += 1 if ( layer_idx >= recompute_skip_num_layers and layer_idx < self.config.recompute_num_layers + recompute_skip_num_layers ): hidden_states, context = checkpoint_handler(custom(layer_idx, layer_idx + 1)) else: hidden_states, context = custom(layer_idx, layer_idx + 1)( hidden_states, attention_mask, context, context_mask, rotary_pos_emb ) else: raise ValueError("Invalid activation recompute method.") return hidden_states def set_input_tensor(self, input_tensor: Tensor): """Set input tensor to be used instead of forward()'s input. When doing pipeline parallelism the input from the previous stage comes from communication, not from the input, so the model's forward_step_func won't have it. This function is thus used by internal code to bypass the input provided by the forward_step_func""" self.input_tensor = input_tensor def get_cuda_graph_optional_args( self, attention_mask: Tensor, context: Tensor, context_mask: Tensor, rotary_pos_emb: Tensor, inference_params: InferenceParams, packed_seq_params: PackedSeqParams, ): """Get optional tensor arguments for CUDA graph.""" optional_inputs = {} optional_inputs['is_first_microbatch'] = self.current_microbatch == 0 try: import transformer_engine.pytorch as te # pylint: disable=unused-import if is_te_min_version("1.10.0", check_equality=False): assert not any( [attention_mask, context, context_mask, rotary_pos_emb] ), "Keyword Arguments not supported with CUDA graph." else: optional_inputs['attention_mask'] = attention_mask optional_inputs['context'] = context optional_inputs['context_mask'] = context_mask optional_inputs['rotary_pos_emb'] = rotary_pos_emb except ImportError: raise RuntimeError("CUDAGraph requires TransformerEngine, but not installed") return optional_inputs def forward( self, hidden_states: Tensor, attention_mask: Tensor, context: Tensor = None, context_mask: Tensor = None, rotary_pos_emb: Tensor = None, rotary_pos_cos: Tensor = None, rotary_pos_sin: Tensor = None, inference_params: InferenceParams = None, packed_seq_params: PackedSeqParams = None, ): """ Perform the forward pass through the transformer block. This method handles the core computation of the transformer, including self-attention, optional cross-attention, and feed-forward operations. Args: hidden_states (Tensor): Input tensor of shape [s, b, h] where s is the sequence length, b is the batch size, and h is the hidden size. attention_mask (Tensor): Boolean tensor of shape [1, 1, s, s] for masking self-attention. context (Tensor, optional): Context tensor for cross-attention. context_mask (Tensor, optional): Mask for cross-attention context rotary_pos_emb (Tensor, optional): Rotary positional embeddings. inference_params (InferenceParams, optional): Parameters for inference-time optimizations. packed_seq_params (PackedSeqParams, optional): Parameters for packed sequence processing. Returns: Union[Tensor, Tuple[Tensor, Tensor]]: The output hidden states tensor of shape [s, b, h], and optionally the updated context tensor if cross-attention is used. """ if not self.pre_process: # See set_input_tensor() hidden_states = self.input_tensor # Viewless tensor. # - We only need to create a viewless tensor in the case of micro batch # size (mbs) == 1, since in this case, 'hidden_states.transpose()' # above creates a view tensor, and '.contiguous()' is a pass-through. # For mbs >= 2, '.contiguous()' creates a new tensor, eliminating # the need to make it viewless. # # However, we don't explicitly check mbs == 1 here because # make_viewless_tensor() has negligible overhead when its input # is already viewless. # # - For the 'else' case above, calling make_viewless_tensor() here is # likely redundant, since p2p_communication.py (likely originator) # already creates viewless tensors. That said, make_viewless_tensor() # is called here to be future-proof and corner-case-proof. hidden_states = make_viewless_tensor(inp=hidden_states, requires_grad=True, keep_graph=True) if self.config.sequence_parallel: rng_context = tensor_parallel.get_cuda_rng_tracker().fork() else: rng_context = nullcontext() if self.config.fp8: import transformer_engine # To keep out TE dependency when not training in fp8 if self.config.fp8 == "e4m3": fp8_format = transformer_engine.common.recipe.Format.E4M3 elif self.config.fp8 == "hybrid": fp8_format = transformer_engine.common.recipe.Format.HYBRID else: raise ValueError("E4M3 and HYBRID are the only supported FP8 formats.") fp8_recipe = TEDelayedScaling( config=self.config, fp8_format=fp8_format, override_linear_precision=(False, False, not self.config.fp8_wgrad), ) fp8_group = None if parallel_state.model_parallel_is_initialized(): fp8_group = parallel_state.get_amax_reduction_group( with_context_parallel=True, tp_only_amax_red=self.tp_only_amax_red ) fp8_context = transformer_engine.pytorch.fp8_autocast( enabled=True, fp8_recipe=fp8_recipe, fp8_group=fp8_group ) else: fp8_context = nullcontext() with rng_context and fp8_context: # Forward pass. if self.config.recompute_granularity == 'full' and self.training: hidden_states = self._checkpointed_forward( hidden_states=hidden_states, attention_mask=attention_mask, context=context, context_mask=context_mask, rotary_pos_emb=rotary_pos_emb, packed_seq_params=packed_seq_params, ) else: for l_no, layer in enumerate(self.layers): with self.offload_context: layer.use_cudagraph = True if (len(self.cuda_graphs) == 0) or (not self.training): hidden_states, context = layer( hidden_states=hidden_states, attention_mask=attention_mask, context=context, context_mask=context_mask, rotary_pos_emb=rotary_pos_emb, rotary_pos_cos=rotary_pos_cos, rotary_pos_sin=rotary_pos_sin, inference_params=inference_params, packed_seq_params=packed_seq_params, ) else: # CUDA graph replay for layer `l_no` and microbatch # `self.current_microbatch`. TransformerEngine versions>=1.10 # allow keyword arguments with CUDA graph. However, CUDA graph # acccepts only Tensor inputs and Tensor outputs. Hence, # `inference_params` and `packed_seq_params` are excluded from # input list while output is limited to `hidden_states`. cg_index = self.current_microbatch % len(self.cuda_graphs[l_no]) assert not any( [inference_params, packed_seq_params] ), "CUDA graph accepts only Tensor inputs." optional_inputs = self.get_cuda_graph_optional_args( attention_mask, context, context_mask, rotary_pos_emb, inference_params, packed_seq_params, ) hidden_states = self.cuda_graphs[l_no][cg_index]( hidden_states, **optional_inputs ) if ( torch.is_grad_enabled() and self.config.cpu_offloading and self.group_prefetch_offload_commit_async is not None ): hidden_states = self.group_prefetch_offload_commit_async(hidden_states) # Final layer norm. if self.final_layernorm is not None: hidden_states = self.final_layernorm(hidden_states) # TENorm produces a "viewed" tensor. This will result in schedule.py's # deallocate_output_tensor() throwing an error, so a viewless tensor is # created to prevent this. hidden_states = make_viewless_tensor( inp=hidden_states, requires_grad=True, keep_graph=True ) return hidden_states def sharded_state_dict( self, prefix: str = '', sharded_offsets: tuple = (), metadata: dict = None ) -> ShardedStateDict: """ Generate a sharded state dictionary for the transformer block. Args: prefix (str, optional): Prefix to be added to all keys in the state dict. Defaults to an empty string. sharded_offsets (tuple, optional): Tuple of sharding offsets. metadata (dict, optional): Additional metadata for sharding. Can specify if layers are non-homogeneous. Defaults to None. Returns: ShardedStateDict: A dictionary containing the sharded state of the model. """ assert not sharded_offsets, "Unexpected sharded offsets" non_homogeneous_layers = metadata is not None and metadata.get( 'non_homogeneous_layers', False ) sharded_state_dict = {} layer_prefix = f'{prefix}layers.' num_layers = self.config.num_layers for layer in self.layers: offset = layer._get_layer_offset() global_layer_offset = layer.layer_number - 1 # self.layer_number starts at 1 state_dict_prefix = f'{layer_prefix}{global_layer_offset - offset}.' # module list index in TransformerBlock # pylint: disable=line-too-long if non_homogeneous_layers: sharded_prefix = f'{layer_prefix}{global_layer_offset}.' sharded_pp_offset = [] else: sharded_prefix = layer_prefix sharded_pp_offset = [ (0, global_layer_offset, num_layers) ] # PP sharding offset for ShardedTensors layer_sharded_state_dict = layer.sharded_state_dict( state_dict_prefix, sharded_pp_offset, metadata ) replace_prefix_for_sharding(layer_sharded_state_dict, state_dict_prefix, sharded_prefix) sharded_state_dict.update(layer_sharded_state_dict) # Add modules other than self.layers for name, module in self.named_children(): if not module is self.layers: sharded_state_dict.update( sharded_state_dict_default( module, f'{prefix}{name}.', sharded_offsets, metadata ) ) return sharded_state_dict