megatron_patch/model/llava/clip_encoder.py (75 lines of code) (raw):

# Copyright (c) 2023 Alibaba PAI and Nvidia Megatron-LM Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig import warnings try: import cvcuda from megatron_patch.data.llava.cvcuda_image_processing_clip import CLIPCVCUDAImageProcessor warnings.warn("The cvcuda environment exists, use the cvcuda operator for preprocessing") except: warnings.warn("The cvcuda environment does not exist. Install cvcuda and use it") class CLIPVisionTower(nn.Module): def __init__(self, vision_tower, cvcuda_image_processing=False, mm_vision_select_layer=-2, mm_vision_select_feature='patch', delay_load=False): super().__init__() self.is_loaded = False self.vision_tower_name = vision_tower self.cvcuda_image_processing = cvcuda_image_processing self.select_layer = mm_vision_select_layer self.select_feature = mm_vision_select_feature if not delay_load: self.load_model() else: self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name) def load_model(self): if self.cvcuda_image_processing: self.image_processor = CLIPCVCUDAImageProcessor.from_pretrained(self.vision_tower_name) else: self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name) self.is_loaded = True def feature_select(self, image_forward_outs): image_features = image_forward_outs.hidden_states[self.select_layer] if self.select_feature == 'patch': image_features = image_features[:, 1:] elif self.select_feature == 'cls_patch': image_features = image_features else: raise ValueError(f'Unexpected select feature: {self.select_feature}') return image_features @torch.no_grad() def forward(self, images): if type(images) is list: image_features = [] for image in images: image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) image_feature = self.feature_select(image_forward_out).to(image.dtype) image_features.append(image_feature) else: image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) image_features = self.feature_select(image_forward_outs).to(images.dtype) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_tower.dtype @property def device(self): return self.vision_tower.device @property def config(self): if self.is_loaded: return self.vision_tower.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2