megatron_patch/model/qwen2_moe/transformer_config.py (55 lines of code) (raw):

# Copyright (c) 2024 Alibaba PAI and Nvidia Megatron-LM Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses from dataclasses import dataclass import torch import torch.nn.functional as F from megatron.core.transformer import TransformerConfig def core_transformer_config_from_args(args, config_class=None): # Config class. config_class = config_class or Qwen2MoETransformerConfig if args.multi_latent_attention: config_class = Qwen2MoETransformerConfig # Translate args to core transformer configuration kw_args = {} for f in dataclasses.fields(config_class): if hasattr(args, f.name): kw_args[f.name] = getattr(args, f.name) kw_args['persist_layer_norm'] = not args.no_persist_layer_norm kw_args['layernorm_zero_centered_gamma'] = args.apply_layernorm_1p kw_args['layernorm_epsilon'] = args.norm_epsilon kw_args['deallocate_pipeline_outputs'] = True kw_args['pipeline_dtype'] = args.params_dtype kw_args['batch_p2p_comm'] = not args.overlap_p2p_comm kw_args['num_moe_experts'] = args.num_experts kw_args['rotary_interleaved'] = args.rotary_interleaved kw_args['num_layers_in_first_pipeline_stage']= args.decoder_first_pipeline_num_layers kw_args['num_layers_in_last_pipeline_stage']= args.decoder_last_pipeline_num_layers if args.swiglu: kw_args['activation_func'] = F.silu kw_args['gated_linear_unit'] = True kw_args['bias_activation_fusion'] = args.bias_swiglu_fusion else: kw_args['bias_activation_fusion'] = args.bias_gelu_fusion if args.squared_relu: assert not args.swiglu kw_args['activation_func'] = squared_relu if args.init_method_xavier_uniform: kw_args['init_method'] = torch.nn.init.xavier_uniform_ kw_args['scaled_init_method'] = torch.nn.init.xavier_uniform_ if args.group_query_attention: kw_args['num_query_groups'] = args.num_query_groups else: kw_args['num_query_groups'] = None kw_args['config_logger_dir'] = args.config_logger_dir if len(args.cp_comm_type) == 1: kw_args['cp_comm_type'] = args.cp_comm_type[0] # Return config. return config_class(**kw_args) @dataclass class Qwen2MoETransformerConfig(TransformerConfig): transformer_impl: str = 'transformer_engine' moe_ffn_hidden_size: int = None shared_moe_ffn_hidden_size: int = None enable_shared_expert: bool = False num_shared_experts: int = None moe_layer_freq: int = None rotary_base: int = None rotary_scaling_factor: int = None max_position_embeddings: int = None moe_aux_loss_coeff: float = 0.0