# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import re
import sys
import types

import torch
from transformers import GPT2Config


def add_checkpointing_args(parser):
    parser.add_argument('--megatron-path',
                        type=str,
                        default=None,
                        help='Base directory of Megatron repository')
    parser.add_argument(
        '--convert_checkpoint_from_megatron_to_transformers',
        action='store_true',
        help=
        ('If True, convert a Megatron checkpoint to a Transformers checkpoint. '
         'If False, convert a Transformers checkpoint to a Megatron checkpoint.'
         ),
    )
    parser.add_argument(
        '--load_path',
        type=str,
        required=True,
        help='Path to the checkpoint to convert.',
    )
    parser.add_argument(
        '--save_path',
        type=str,
        required=True,
        help='Path to the converted checkpoint.',
    )
    parser.add_argument('--print-checkpoint-structure', action='store_true')
    return parser


def add_megatron_checkpoint_args(parser):
    parser.add_argument(
        '--target_tensor_model_parallel_size',
        type=int,
        default=1,
        help=
        ('The tensor model parallel size of the converted checkpoint. '
         'Only used when converting a Transformers checkpoint to a Megatron checkpoint.'
         ),
    )
    parser.add_argument(
        '--target_pipeline_model_parallel_size',
        type=int,
        default=1,
        help=
        ('The pipeline model parallel size of the converted checkpoint. '
         'Only used when converting a Transformers checkpoint to a Megatron checkpoint.'
         ),
    )
    parser.add_argument(
        '--target_data_parallel_size',
        type=int,
        default=1,
        help=
        ('The data parallel size of the converted checkpoint. '
         'Only used when converting a Transformers checkpoint to a Megatron checkpoint.'
         ),
    )
    parser.add_argument(
        '--target_params_dtype',
        type=str,
        default='fp32',
        help=
        ('The dtype of the converted checkpoint. '
         'Only used when converting a Transformers checkpoint to a Megatron checkpoint.'
         ),
    )
    parser.add_argument(
        '--make_vocab_size_divisible_by',
        type=int,
        default=128,
        help=
        ('Pad the vocab size to be divisible by this value. '
         'This is added for computational efficieny reasons. '
         'Only used when converting a Transformers checkpoint to a Megatron checkpoint.'
         ),
    )

    return parser


# The simple map of names for "automated" rules.
megatron_to_transformers = {
    'self_attention.dense': '.attention.dense.',
    'mlp.dense_h_to_4h': '.mlp.dense_h_to_4h.',
    'mlp.dense_4h_to_h': '.mlp.dense_4h_to_h.',
}
transformers_to_megatron = {
    v[1:-1]: k
    for k, v in megatron_to_transformers.items()
}

# important, should match original
tensor_parallel_params = [
    # megatron-lm layers to merge across tp ranks
    'attention.query_key_value.weight',
    'attention.query_key_value.bias',
    'attention.dense.weight',
    'mlp.dense_h_to_4h.weight',
    'mlp.dense_h_to_4h.bias',
    'mlp.dense_4h_to_h.weight'
]


def recursive_print(name, val, spaces=0):
    """
    Recursively print the structure of a checkpoint. This function is taken from `convert_megatron_gpt2_checkpoint.py`
    Args:
        name (str): the name of the current tensor parameter
        val (Tuple(int)): the shape of the current tensor parameter
        spaces (int): the number of spaces to print before the output for a nested structure
    """
    # Format the message.
    if name is None:
        msg = None
    else:
        fmt = '.' * max(0, spaces - 2) + '# {:' + str(50 - spaces) + 's}'
        msg = fmt.format(name)

    # Print and recurse (if needed).
    if isinstance(val, dict):
        if msg is not None:
            print(msg)
        for k in val.keys():
            recursive_print(k, val[k], spaces + 2)
    elif isinstance(val, torch.Tensor):
        print(msg, ':', val.size())
    else:
        print(msg, ':', val)


def megatron_to_transformers_fix_query_key_value_ordering(
        param, checkpoint_version, num_splits, num_heads, hidden_size):
    """
    Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] for compatibility with later versions
    of NVIDIA Megatron-LM. The inverse operation is performed inside Megatron-LM to read checkpoints:
    https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 If param is the weight tensor of the
    self-attention block, the returned tensor will have to be transposed one more time to be read by HuggingFace GPT2.
    This function is taken from `convert_megatron_gpt2_checkpoint.py`
    Args:
        param (torch.Tensor): the tensor to permute
        checkpoint_version (int): the version of the checkpoint.
        num_splits (int): the number of projections, usually 3 for (Query, Key, Value)
        num_heads (int): the number of attention heads
        hidden_size (int): the hidden size per head
    """

    input_shape = param.size()
    if checkpoint_version == 1.0:
        # version 1.0 stores [num_heads * hidden_size * num_splits, :]
        saved_shape = (num_heads, hidden_size, num_splits) + input_shape[1:]
        param = param.view(*saved_shape)
        param = param.transpose(0, 2)
        param = param.transpose(1, 2).contiguous()
    elif checkpoint_version >= 2.0:
        # other versions store [num_heads * num_splits * hidden_size, :]
        saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:]
        param = param.view(*saved_shape)
        param = param.transpose(0, 1).contiguous()
    param = param.view(*input_shape)
    return param


def transformers_to_megatron_fix_query_key_value_ordering(
        param, checkpoint_version, num_splits, num_heads, hidden_size):
    """
    Permutes layout of param tensor to the one compatible with respective NVIDIA Megatron-LM chekpoint versions. Input
    is [num_splits * num_heads * hidden_size, :] and output is [num_heads * hidden_size * num_splits, :] for version
    1.0 and [num_heads * num_splits * hidden_size, :] for version 2.0 and later. If param is the weight tensor of the
    self-attention block, the param needs to be already transposed before calling this function.
    Args:
        param (torch.Tensor): the tensor to permute
        checkpoint_version (int): the version of the checkpoint.
        num_splits (int): the number of projections, usually 3 for (Query, Key, Value)
        num_heads (int): the number of attention heads
        hidden_size (int): the hidden size per head
    """

    # Input is [num_splits * num_heads * hidden_size, :]
    input_shape = param.size()
    if checkpoint_version == 1.0:
        # version 1.0 stores [num_heads * hidden_size * num_splits, :]
        current_shape = (num_splits, num_heads, hidden_size) + input_shape[1:]
        param = param.view(*current_shape)
        param = param.transpose(0, 2)
        param = param.transpose(1, 2).contiguous()
    elif checkpoint_version >= 2.0:
        # other versions store [num_heads * num_splits * hidden_size, :]
        current_shape = (num_splits, num_heads, hidden_size) + input_shape[1:]
        param = param.view(*current_shape)
        param = param.transpose(0, 1).contiguous()
    param = param.view(*input_shape)
    return param


def merge_transformers_sharded_states(path, num_checkpoints):
    """
    Merge sharded checkpoints from transformers into a single checkpoint.
    Args:
        path (str): the path to the sharded checkpoints
        num_checkpoints (int): the number of checkpoints to merge
    """
    state_dict = {}
    for i in range(1, num_checkpoints + 1):
        checkpoint_path = os.path.join(
            path, f'pytorch_model-{i:05d}-of-{num_checkpoints:05d}.bin')
        current_chunk = torch.load(checkpoint_path, map_location='cpu')
        state_dict.update(current_chunk)
    return state_dict


def get_megatron_sharded_states(args, tp_size, pp_size, pp_rank):
    """
    Get sharded checkpoints from NVIDIA Megatron-LM checkpoint based on the provided tensor parallel size, pipeline
    parallel size and pipeline parallel rank.
    Args:
        args (argparse.Namespace): the arguments to the script
        tp_size (int): the tensor parallel size
        pp_size (int): the pipeline parallel size
        pp_rank (int): the pipeline parallel rank
    """
    tp_state_dicts = []
    for i in range(tp_size):
        sub_dir_name = f'mp_rank_{i:02d}' if pp_size == 1 else f'mp_rank_{i:02d}_{pp_rank:03d}'
        checkpoint_name = os.listdir(os.path.join(args.load_path,
                                                  sub_dir_name))[0]
        checkpoint_path = os.path.join(args.load_path, sub_dir_name,
                                       checkpoint_name)
        state_dict = torch.load(checkpoint_path, map_location='cpu')
        tp_state_dicts.append(state_dict)
    return tp_state_dicts


def get_element_from_dict_by_path(d, path):
    """
    Get element from dictionary by path. If element is not present, recursively add empty dictionaries.
    Args:
        d (dict): the dictionary to get the element from
        path (list): the path to the element which is delimited by "."
    """
    path = path.split('.')
    for k in path:
        if k not in d:
            d[k] = {}
        d = d[k]
    return d

def convert_checkpoint_from_transformers_to_megatron(args):
    """
    Convert a checkpoint from HuggingFace Transformers to Megatron-LM. This allows converted checkpoints with variable
    tensor parallelism and pipeline parallelism sizes. It takes as input a checkpoint from HuggingFace Transformers
    which can have multiple shards.
    Args:
        args (argparse.Namespace): the arguments to the script
    """
    os.makedirs(args.save_path, exist_ok=True)
    # Search in directory above this
    sys.path.append(
        os.path.abspath(os.path.join(os.path.dirname(__file__),
                                     os.path.pardir)))
    if args.megatron_path is not None:
        sys.path.insert(0, args.megatron_path)

    try:
        from megatron.tokenizer.tokenizer import _vocab_size_with_padding
    except ModuleNotFoundError:
        print(
            'Unable to import Megatron, please specify the path to Megatron using --megatron-path. Exiting.'
        )
        exit(1)

    # load the transformers model state dict and config
    sub_dirs = [
        x for x in os.listdir(args.load_path) if x.startswith('pytorch_model')
    ]
    if len(sub_dirs) == 1:
        checkpoint_name = 'pytorch_model.bin'
        state_dict = torch.load(os.path.join(args.load_path, checkpoint_name),
                                map_location='cpu')
    else:
        num_checkpoints = len(sub_dirs) - 1
        state_dict = merge_transformers_sharded_states(args.load_path,
                                                       num_checkpoints)

    if 'module' in state_dict.keys():
        state_dict = state_dict['module']

    config = GPT2Config.from_pretrained(args.load_path)

    # Saving config and tokenzier files

    os.system("cp -rf "+args.load_path+"/*.json "+args.save_path)
    os.system("cp -rf " + args.load_path + "/cog-pretrain.model " + args.save_path)

    # Saving the tracker file
    tracker_filepath = os.path.join(args.save_path,
                                    'latest_checkpointed_iteration.txt')
    with open(tracker_filepath, 'w') as f:
        f.write('release')

    # create `release` dir in args.load_path
    release_dir = os.path.join(args.save_path, 'release')
    os.makedirs(release_dir, exist_ok=True)

    # megatron args
    megatron_args = {
        'orig_vocab_size': config.vocab_size,
        'hidden_size': config.hidden_size,
        'num_layers': config.num_layers,
        'num_attention_heads': config.num_attention_heads,
        'tensor_model_parallel_size': args.target_tensor_model_parallel_size,
        'pipeline_model_parallel_size':
        args.target_pipeline_model_parallel_size,
        'data_parallel_size': args.target_data_parallel_size,
        'make_vocab_size_divisible_by': args.make_vocab_size_divisible_by,
        'rank': 0,
        'tokenizer_type': 'GPT2BPETokenizer',
    }

    if config.activation_function == 'gelu':
        megatron_args['bias_gelu_fusion'] = False
        megatron_args['openai_gelu'] = False
    elif config.activation_function == 'gelu_fast':
        megatron_args['bias_gelu_fusion'] = True
        megatron_args['openai_gelu'] = False
    elif config.activation_function == 'gelu_new':
        megatron_args['bias_gelu_fusion'] = False
        megatron_args['openai_gelu'] = True

    margs = types.SimpleNamespace()
    for k, v in megatron_args.items():
        setattr(margs, k, v)

    # params dtype
    if args.target_params_dtype == 'fp16':
        dtype = torch.float16
    elif args.target_params_dtype == 'bf16':
        dtype = torch.bfloat16
    else:
        dtype = torch.float32
    setattr(margs, 'params_dtype', dtype)

    # Convert.
    print('Converting')
    output_state_dict = []
    for i in range(args.target_tensor_model_parallel_size):
        output_state_dict.append({})

    for i, j in list(state_dict.items()):
        state_dict.pop(i)
        state_dict[i.replace('glm.', '')] = j
    # Embedding layer
    print('converting embedding layer')
    word_embedding = state_dict['word_embeddings.weight'].to(dtype)
    postion_embedding = state_dict['transformer.position_embeddings.weight'].to(dtype)
    block_postion_embedding = state_dict['transformer.block_position_embeddings.weight'].to(dtype)
    orig_vocab_size = config.vocab_size
    #padded_vocab_size = _vocab_size_with_padding(orig_vocab_size, margs)
    padded_vocab_size = orig_vocab_size
    setattr(margs, 'padded_vocab_size', padded_vocab_size)
    # Cut out extra padding we don't need
    if orig_vocab_size > padded_vocab_size:
        full_word_embed = word_embedding[0:padded_vocab_size, :]
    # Expanding embedding to larger size by replicating final entry
    elif orig_vocab_size < padded_vocab_size:
        padding_size = padded_vocab_size - orig_vocab_size
        full_word_embed = torch.cat(
            (word_embedding,
             word_embedding[-1].unsqueeze(0).expand(padding_size, -1)))
    # Same size!
    else:
        full_word_embed = word_embedding

    # Split into new tensor model parallel sizes
    out_word_embed = torch.chunk(full_word_embed,
                                 args.target_tensor_model_parallel_size,
                                 dim=0)

    for i in range(args.target_tensor_model_parallel_size):
        word_emb_dict = get_element_from_dict_by_path(
            output_state_dict[i], 'model.language_model.embedding')
        word_emb_dict['word_embeddings.weight'] = out_word_embed[i]

        position_emb_dict = get_element_from_dict_by_path(
            output_state_dict[i], 'model.language_model.embedding')
        position_emb_dict['position_embeddings.weight'] = postion_embedding

        block_position_emb_dict = get_element_from_dict_by_path(
            output_state_dict[i], 'model.language_model.embedding')
        block_position_emb_dict['block_position_embeddings.weight'] = block_postion_embedding

    # Transformer layers
    print('converting transformer layers')
    if config.num_layers % args.target_pipeline_model_parallel_size != 0:
        raise ValueError(
            f'Number of layers ({config.num_layers}) must be divisible by number of tensor parallelism'
            f' ({args.target_pipeline_model_parallel_size})')
    num_layers = config.num_layers // args.target_pipeline_model_parallel_size

    layer_re = re.compile('transformer.layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)')
    # The number of heads.
    heads = config.num_attention_heads
    # The hidden_size per head.
    hidden_size_per_head = config.hidden_size // config.num_attention_heads
    for pp_rank in range(args.target_pipeline_model_parallel_size):
        print(pp_rank)
        layer_offset = pp_rank * num_layers
        if pp_rank > 0:
            output_state_dict = []
            for i in range(args.target_tensor_model_parallel_size):
                output_state_dict.append({})

        for layer in range(num_layers):
            pp_layer_id = layer + layer_offset
            layers_to_copy = [
                layer_name for layer_name in state_dict.keys()
                if layer_name.startswith(f'transformer.layers.{pp_layer_id}.')
            ]

            for layer_name in layers_to_copy:
                m = layer_re.match(layer_name)
                # Stop if that's not a layer
                if m is None:
                    break

                # The index of the layer.
                _ = int(m.group(1))
                # The name of the operation.
                op_name = m.group(2)
                # Is it a weight or a bias?
                weight_or_bias = m.group(3)
                params = state_dict[layer_name].to(dtype)
                # handle layernorm
                if op_name.startswith('input_layernorm') or op_name.startswith(
                        'post_attention_layernorm'):
                    out_name = 'input_layernorm' if op_name.endswith(
                        'input_layernorm') else 'post_attention_layernorm'
                    layer_name = f'layers.{layer}.{out_name}.{weight_or_bias}'

                elif op_name.startswith('attention.rotary_emb'):
                    #TODO: fit megatron
                    #params = torch.cat([params, params])
                    layer_name = f'layers.{layer}.self_attention.rotary_emb.inv_freq'

                # handle attention K, V, Q weights
                elif op_name.startswith('attention.query_key_value'
                                        ) and weight_or_bias == 'weight':

                    """
                    params = transformers_to_megatron_fix_query_key_value_ordering(
                        params,
                        3.0,
                        3,
                        heads,
                        hidden_size_per_head,
                    )
                    """
                    layer_name = f'layers.{layer}.self_attention.query_key_value.{weight_or_bias}'

                # handle attention K, V, Q bias
                elif op_name.startswith('attention.query_key_value'
                                        ) and weight_or_bias == 'bias':

                    """
                    params = transformers_to_megatron_fix_query_key_value_ordering(
                        params,
                        3.0,
                        3,
                        heads,
                        hidden_size_per_head,
                    )
                    """
                    layer_name = f'layers.{layer}.self_attention.query_key_value.{weight_or_bias}'

                # handle attention and mlp weights
                elif weight_or_bias == 'weight':
                    out_name = transformers_to_megatron.get(op_name, None)
                    if out_name is None:
                        continue
                    layer_name = f'layers.{layer}.{out_name}.{weight_or_bias}'

                # handle attention and mlp bias
                elif weight_or_bias == 'bias':
                    out_name = transformers_to_megatron.get(op_name, None)
                    if out_name is None:
                        continue
                    layer_name = f'layers.{layer}.{out_name}.{weight_or_bias}'

                # skip
                else:
                    continue

                if op_name + '.' + weight_or_bias in tensor_parallel_params:
                    dim = 1 if op_name in [
                        'attention.dense', 'mlp.dense_4h_to_h'
                    ] else 0
                    params = torch.chunk(
                        params,
                        args.target_tensor_model_parallel_size,
                        dim=dim)

                for i in range(args.target_tensor_model_parallel_size):
                    params_dict = get_element_from_dict_by_path(
                        output_state_dict[i], 'model.language_model.encoder')
                    params_dict[layer_name] = (params[i] if (
                        op_name + '.' +
                        weight_or_bias in tensor_parallel_params) else params)

        if pp_rank == args.target_pipeline_model_parallel_size - 1:
            # handle final layernorm
            for weight_or_bias in ['weight', 'bias']:
                params = state_dict[
                    f'transformer.final_layernorm.{weight_or_bias}'].to(dtype)
                layer_name = f'final_layernorm.{weight_or_bias}'
                for i in range(args.target_tensor_model_parallel_size):
                    params_dict = get_element_from_dict_by_path(
                        output_state_dict[i], 'model.language_model.encoder')
                    params_dict[layer_name] = params

            # add the LM head
            for i in range(args.target_tensor_model_parallel_size):
                params_dict = get_element_from_dict_by_path(
                    output_state_dict[i], 'model.word_embeddings_for_head')
                params_dict['weight'] = out_word_embed[i]

        # saving the state dict as per the tp_rank and pp_rank
        for tp_rank in range(args.target_tensor_model_parallel_size):
            output_state_dict[tp_rank]['checkpoint_version'] = 0
            output_state_dict[tp_rank]['args'] = margs
            checkpoint_dir = (f'mp_rank_{tp_rank:02d}'
                              if args.target_pipeline_model_parallel_size == 1
                              else f'mp_rank_{tp_rank:02d}_{pp_rank:03d}')

            checkpoint_name = 'model_optim_rng.pt'
            checkpoint_dir = os.path.join(release_dir, checkpoint_dir)
            os.makedirs(checkpoint_dir, exist_ok=True)
            checkpoint_path = os.path.join(checkpoint_dir, checkpoint_name)
            if args.print_checkpoint_structure:
                print(
                    f'Checkpoint structure of model state dict shard belonging to TP rank {tp_rank} and PP rank'
                    f' {pp_rank}:')
                recursive_print(None, output_state_dict[tp_rank])
            torch.save(output_state_dict[tp_rank], checkpoint_path)


def main():
    parser = argparse.ArgumentParser()
    parser = add_checkpointing_args(parser)
    parser = add_megatron_checkpoint_args(parser)
    args = parser.parse_args()
    convert_checkpoint_from_transformers_to_megatron(args)


if __name__ == '__main__':
    main()
