toolkits/model_checkpoints_convertor/mistral/hf2mcore.py (468 lines of code) (raw):
import os
import re
import json
import torch
import torch.nn as nn
from collections import defaultdict
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
)
from megatron.training.initialize import initialize_megatron
from megatron.training import get_args
from megatron.training.checkpointing import get_checkpoint_name, get_checkpoint_tracker_filename, read_metadata
import sys
path_dir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))))
sys.path.append(os.path.join(path_dir, "examples"))
from mistral.pretrain_mcore_mistral import model_provider
from megatron_patch.arguments import get_patch_args
from toolkits.model_checkpoints_convertor.utils import (
save_hfmodel,
save_state_dict
)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
def add_checkpointing_args(parser):
parser.add_argument('--megatron-path',
type=str,
default=None,
help='Base directory of Megatron repository')
parser.add_argument(
'--convert_checkpoint_from_megatron_to_transformers',
action='store_true',
help=
('If True, convert a Megatron checkpoint to a Transformers checkpoint. '
'If False, convert a Transformers checkpoint to a Megatron checkpoint.'
),
)
parser.add_argument(
'--load_path',
type=str,
required=True,
help='Path to the checkpoint to convert.',
)
parser.add_argument(
'--save_path',
type=str,
required=True,
help='Path to the converted checkpoint.',
)
parser.add_argument(
'--huggingface_model_path',
type=str,
required=True,
)
return parser
def add_megatron_checkpoint_args(parser):
parser.add_argument(
"--target_tensor_model_parallel_size",
type=int,
default=1,
help=(
"The tensor model parallel size of the converted checkpoint. "
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
),
)
parser.add_argument(
"--target_pipeline_model_parallel_size",
type=int,
default=1,
help=(
"The pipeline model parallel size of the converted checkpoint. "
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
),
)
parser.add_argument(
"--target_expert_model_parallel_size",
type=int,
default=1,
help=(
"The data parallel size of the converted checkpoint. "
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
),
)
return parser
def add_transformers_checkpoint_args(parser):
parser.add_argument(
"--max_shard_size",
type=str,
default="10GB",
help=(
"The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size "
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`). "
"Only used when converting a Megatron checkpoint to a Transformers checkpoint."
),
)
return parser
def build_huggingface_model(model_to_load, compute_dtype, random_init=False):
config = AutoConfig.from_pretrained(
model_to_load,
trust_remote_code=True,
)
if random_init:
model = AutoModelForCausalLM.from_config(
config=config,
torch_dtype=compute_dtype,
trust_remote_code=True
)
else:
model = AutoModelForCausalLM.from_pretrained(
model_to_load,
torch_dtype=compute_dtype,
trust_remote_code=True
)
return config, model.eval()
def create_huggingface_model(args):
if args.num_experts is None:
copy_huggingface_tokenizer(args.huggingface_model_path, args.save_path)
config, model = build_huggingface_model(args.huggingface_model_path, args.params_dtype)
else:
copy_huggingface_tokenizer(args.huggingface_model_path, args.save_path, with_code=True)
config, model = build_huggingface_model(args.save_path, args.params_dtype, random_init=True)
return config, model.eval()
def create_megatron_model(args, hf_config):
args.hidden_size = hf_config.hidden_size
args.num_layers = hf_config.num_hidden_layers
args.num_attention_heads = hf_config.num_attention_heads
args.kv_channels = args.hidden_size // args.num_attention_heads
args.ffn_hidden_size = hf_config.intermediate_size
args.num_query_groups = hf_config.num_key_value_heads
model = model_provider()
return model.eval()
def copy_huggingface_tokenizer(src_path, dst_path, with_code=False):
assert os.path.exists(src_path)
os.makedirs(dst_path, exist_ok=True)
os.system("cp -rf " + src_path + "/config*.json " + dst_path)
os.system("cp -rf " + src_path + "/tokenizer* " + dst_path)
if with_code:
cur_dir = os.path.dirname(os.path.abspath(__file__))
code_path = os.path.join(cur_dir, 'hf_mistral_moe')
os.system("cp -rf " + code_path + "/*.json " + dst_path)
def name_to_expert_rank(key):
pattern = r'local_experts\.(\d+)\.'
expert_rank = int(re.findall(pattern, key)[0])
return expert_rank
def load_megatron_model(args, model):
model_path = args.load_path
tracker_filename = get_checkpoint_tracker_filename(model_path)
iteration, release = read_metadata(tracker_filename)
head_dim = args.hidden_size // args.num_attention_heads
group_per_split = args.num_query_groups // args.target_tensor_model_parallel_size
num_local_experts = args.num_experts // args.target_expert_model_parallel_size if args.num_experts else 0
state_dict = {}
mid_state = defaultdict(list)
if (
args.target_tensor_model_parallel_size == 1
and args.target_pipeline_model_parallel_size == 1
and args.target_expert_model_parallel_size == 1
):
checkpoint_name = get_checkpoint_name(model_path, iteration, release, None, None, None, None, None)
state_dict = torch.load(checkpoint_name, weights_only=False)['model']
elif (
args.target_tensor_model_parallel_size == 1
and args.target_pipeline_model_parallel_size == 1
and args.num_experts
and args.num_experts % args.target_expert_model_parallel_size == 0
):
for ep_rank in range(args.target_expert_model_parallel_size):
checkpoint_name = get_checkpoint_name(model_path, iteration, release, None, None, None, True, ep_rank)
print(f'load {checkpoint_name}')
split_state = torch.load(checkpoint_name, map_location="cpu", weights_only=False)['model']
for k, v in split_state.items():
if 'local_experts' in k:
expert_local_rank = name_to_expert_rank(k)
expert_rank = expert_local_rank + num_local_experts * ep_rank
k = k.replace(f'local_experts.{expert_local_rank}', f'local_experts.{expert_rank}')
state_dict[k] = v
elif (
args.target_tensor_model_parallel_size > 1
and args.target_pipeline_model_parallel_size == 1
and args.num_experts is None
):
for tp_rank in range(args.target_tensor_model_parallel_size):
checkpoint_name = get_checkpoint_name(model_path, iteration, release, None, tp_rank, None, None, None)
print(f'load {checkpoint_name}')
split_state = torch.load(checkpoint_name, map_location="cpu", weights_only=False)['model']
for k, v in split_state.items():
mid_state[k].append(v)
for k, v in mid_state.items():
if not isinstance(v[0], torch.Tensor) or 'norm' in k:
target_v = v[0]
elif 'extra_state' in k:
target_v = None
elif 'embedding' in k or 'output_layer' in k:
target_v = torch.cat(v, dim=0)
elif 'linear_proj' in k or 'linear_fc2' in k:
target_v = torch.cat(v, dim=1)
elif 'linear_qkv.weight' in k:
viewed = [x.view(group_per_split, -1, head_dim, args.hidden_size) for x in v]
target_v = torch.cat(viewed, dim=0).view(-1, args.hidden_size)
elif 'linear_qkv.bias' in k:
viewed = [x.view(group_per_split, -1) for x in v]
target_v = torch.cat(viewed, dim=0).view(-1)
elif 'linear_fc1' in k:
viewed = [x.view(2, -1, args.hidden_size) for x in v]
target_v = torch.cat(viewed, dim=1).view(-1, args.hidden_size)
else:
raise ValueError
state_dict[k] = target_v
elif (
args.target_tensor_model_parallel_size > 1
and args.target_pipeline_model_parallel_size == 1
and args.num_experts
and args.num_experts % args.target_expert_model_parallel_size == 0
):
for tp_rank in range(args.target_tensor_model_parallel_size):
for ep_rank in range(args.target_expert_model_parallel_size):
checkpoint_name = get_checkpoint_name(model_path, iteration, release, None, tp_rank, None, True,
ep_rank)
print(f'load {checkpoint_name}')
split_state = torch.load(checkpoint_name, map_location="cpu", weights_only=False)['model']
for k, v in split_state.items():
if 'local_experts' in k and 'norm' not in k:
local_expert_rank = name_to_expert_rank(k)
expert_rank = local_expert_rank + num_local_experts * ep_rank
k = k.replace(f'local_experts.{local_expert_rank}', f'local_experts.{expert_rank}')
mid_state[k].append(v)
elif ep_rank == 0:
mid_state[k].append(v)
for k, v in mid_state.items():
if not isinstance(v[0], torch.Tensor) or 'norm' in k or 'router' in k:
target_v = v[0]
elif 'extra_state' in k:
target_v = None
elif 'embedding' in k or 'output_layer' in k:
target_v = torch.cat(v, dim=0)
elif 'linear_proj' in k or 'linear_fc2' in k:
target_v = torch.cat(v, dim=1)
elif 'linear_qkv.weight' in k:
viewed = [x.view(group_per_split, -1, head_dim, args.hidden_size) for x in v]
target_v = torch.cat(viewed, dim=0).view(-1, args.hidden_size)
elif 'linear_qkv.bias' in k:
viewed = [x.view(group_per_split, -1) for x in v]
target_v = torch.cat(viewed, dim=0).view(-1)
elif 'linear_fc1' in k:
viewed = [x.view(2, -1, args.hidden_size) for x in v]
target_v = torch.cat(viewed, dim=1).view(-1, args.hidden_size)
else:
print('passed', k)
state_dict[k] = target_v
else:
raise ValueError('not support yet')
model.load_state_dict(state_dict)
return model
def convert_checkpoint_from_megatron_to_transformers(mgmodel, hgmodel, args):
query_group = args.num_query_groups
hidden_size = args.hidden_size
head_dim = hidden_size // args.num_attention_heads
num_experts = args.num_experts
value_num_per_group = args.num_attention_heads // query_group
with torch.no_grad():
hgmodel.model.embed_tokens.weight.copy_(mgmodel.embedding.word_embeddings.weight)
for mglayer, hglayer in zip(mgmodel.decoder.layers, hgmodel.model.layers):
hglayer.input_layernorm.weight.copy_(mglayer.self_attention.linear_qkv.layer_norm_weight)
qkv_weight = mglayer.self_attention.linear_qkv.weight.view(query_group, -1, head_dim, hidden_size)
q_weight, k_weight, v_weight = torch.split(qkv_weight, split_size_or_sections=[value_num_per_group, 1, 1],
dim=1)
hglayer.self_attn.q_proj.weight.copy_(q_weight.reshape(-1, hidden_size))
hglayer.self_attn.k_proj.weight.copy_(k_weight.reshape(-1, hidden_size))
hglayer.self_attn.v_proj.weight.copy_(v_weight.reshape(-1, hidden_size))
hglayer.self_attn.o_proj.weight.copy_(mglayer.self_attention.linear_proj.weight)
if num_experts is None:
gate_weight, fc1_weight = torch.split(mglayer.mlp.linear_fc1.weight,
split_size_or_sections=args.ffn_hidden_size)
hglayer.mlp.gate_proj.weight.copy_(gate_weight)
hglayer.mlp.up_proj.weight.copy_(fc1_weight)
hglayer.mlp.down_proj.weight.copy_(mglayer.mlp.linear_fc2.weight)
hglayer.post_attention_layernorm.weight.copy_(mglayer.mlp.linear_fc1.layer_norm_weight)
else:
hglayer.post_attention_layernorm.weight.copy_(mglayer.pre_mlp_layernorm.weight)
hglayer.mlp.gate.weight.copy_(mglayer.mlp.router.weight)
for mgexpert, hgexpert in zip(mglayer.mlp.experts.local_experts, hglayer.mlp.experts):
gate_weight, fc1_weight = torch.split(mgexpert.linear_fc1.weight,
split_size_or_sections=args.ffn_hidden_size)
hgexpert.w1.weight.copy_(gate_weight)
hgexpert.w3.weight.copy_(fc1_weight)
hgexpert.w2.weight.copy_(mgexpert.linear_fc2.weight)
hgmodel.model.norm.weight.copy_(mgmodel.decoder.final_layernorm.weight)
hgmodel.lm_head.weight.copy_(mgmodel.output_layer.weight)
def convert_checkpoint_from_transformers_to_megatron(mgmodel, hgmodel, args, hf_config):
num_query_groups = hf_config.num_key_value_heads
hidden_dim = hf_config.hidden_size
head_dim = hidden_dim // hf_config.num_attention_heads
num_experts = args.num_experts
with torch.no_grad():
mgmodel.embedding.word_embeddings.weight.copy_(hgmodel.model.embed_tokens.weight)
for mglayer, hglayer in zip(mgmodel.decoder.layers, hgmodel.model.layers):
mglayer.self_attention.linear_qkv.layer_norm_weight.copy_(hglayer.input_layernorm.weight)
q = hglayer.self_attn.q_proj.weight.view([num_query_groups, -1, head_dim, hidden_dim])
k = hglayer.self_attn.k_proj.weight.view([num_query_groups, -1, head_dim, hidden_dim])
v = hglayer.self_attn.v_proj.weight.view([num_query_groups, -1, head_dim, hidden_dim])
qkv = torch.cat([q, k, v], dim=1).view(-1, hidden_dim).contiguous()
mglayer.self_attention.linear_qkv.weight.copy_(qkv)
mglayer.self_attention.linear_proj.weight.copy_(hglayer.self_attn.o_proj.weight)
fc1_weight = torch.cat([hglayer.mlp.gate_proj.weight, hglayer.mlp.up_proj.weight])
if num_experts is None:
mglayer.mlp.linear_fc1.weight.copy_(fc1_weight)
mglayer.mlp.linear_fc2.weight.copy_(hglayer.mlp.down_proj.weight)
mglayer.mlp.linear_fc1.layer_norm_weight.copy_(hglayer.post_attention_layernorm.weight)
else:
mglayer.pre_mlp_layernorm.weight.copy_(hglayer.post_attention_layernorm.weight)
nn.init.normal_(mglayer.mlp.router.weight, mean=0, std=0.02)
for expert in mglayer.mlp.experts.local_experts:
expert.linear_fc1.weight.copy_(fc1_weight)
expert.linear_fc2.weight.copy_(hglayer.mlp.down_proj.weight)
mgmodel.decoder.final_layernorm.weight.copy_(hgmodel.model.norm.weight)
mgmodel.output_layer.weight.copy_(hgmodel.lm_head.weight)
def save_mgmodel(args, mgmodel, load_path, save_path):
args.tensor_model_parallel_size = args.target_tensor_model_parallel_size
args.pipeline_model_parallel_size = args.target_pipeline_model_parallel_size
if args.num_experts is not None:
args.expert_model_parallel_size = args.target_expert_model_parallel_size
# Saving config and tokenzier files
copy_huggingface_tokenizer(load_path, save_path)
tracker_filepath = os.path.join(save_path, 'latest_checkpointed_iteration.txt')
with open(tracker_filepath, "w") as f:
f.write("release")
head_dim = args.hidden_size // args.num_attention_heads
group_per_split = args.num_query_groups // args.target_tensor_model_parallel_size
full_model = mgmodel.state_dict_for_save_checkpoint()
for k in list(full_model.keys()):
if 'extra_state' in k:
# NOTE: since TE 1.14, fp8 metadata will be saved as tensor.
# Always drop these values in the MG ckpt to avoid potential issue.
# This should work fine because fp8 metadata is not supported by HF ckpt.
full_model[k] = None
elif full_model[k] is None:
full_model.pop(k)
pattern = r'local_experts\.(\d+)\.'
num_local_experts = args.num_experts // args.target_expert_model_parallel_size if args.num_experts else 0
if (
args.target_tensor_model_parallel_size == 1
and args.target_pipeline_model_parallel_size == 1
and args.target_expert_model_parallel_size == 1
):
checkpoint_name = get_checkpoint_name(save_path, 0, True)
save_state_dict(args, [full_model], checkpoint_name)
elif (
args.target_tensor_model_parallel_size == 1
and args.target_pipeline_model_parallel_size == 1
and args.num_experts
and args.num_experts % args.target_expert_model_parallel_size == 0
):
for ep_rank in range(args.target_expert_model_parallel_size):
model_split = {}
checkpoint_name = get_checkpoint_name(save_path, 0, True, None, None, None, True, ep_rank)
print(f'save ep_rank {ep_rank} model to {checkpoint_name}')
for k, v in full_model.items():
if 'local_experts' in k:
expert_rank = int(re.findall(pattern, k)[0])
if expert_rank // num_local_experts != ep_rank:
continue
expert_local_rank = expert_rank % args.target_expert_model_parallel_size
k = k.replace(f'local_experts.{expert_rank}', f'local_experts.{expert_local_rank}')
model_split[k] = v
save_state_dict(args, [model_split], checkpoint_name)
elif (
args.target_tensor_model_parallel_size > 1
and args.target_pipeline_model_parallel_size == 1
and args.num_experts is None
):
for tp_rank in range(args.target_tensor_model_parallel_size):
model_split = {}
checkpoint_name = get_checkpoint_name(save_path, 0, True, None, tp_rank)
print(f'tensor_parallel, save model to {checkpoint_name}')
for k, v in full_model.items():
if not isinstance(v, torch.Tensor):
target_v = v
elif 'linear_qkv.weight' in k and 'norm' not in k:
viewed = v.view(args.num_query_groups, -1, head_dim, args.hidden_size)
viewed = viewed[group_per_split * tp_rank: group_per_split * (tp_rank + 1)]
target_v = viewed.view(-1, args.hidden_size)
elif 'linear_qkv.bias' in k and 'norm' not in k:
viewed = v.view(args.num_query_groups, -1, head_dim)
viewed = viewed[group_per_split * tp_rank: group_per_split * (tp_rank + 1)]
target_v = viewed.view(-1)
elif 'linear_proj' in k or 'linear_fc2' in k:
seg = v.shape[1] // args.target_tensor_model_parallel_size
target_v = v[:, seg * tp_rank: seg * (tp_rank + 1)]
elif 'embedding' in k or 'output_layer' in k:
seg = v.shape[0] // args.target_tensor_model_parallel_size
target_v = v[seg * tp_rank: seg * (tp_rank + 1)]
elif 'linear_fc1' in k and 'norm' not in k:
viewed = v.view(-1, args.ffn_hidden_size, args.hidden_size)
seg = args.ffn_hidden_size // args.target_tensor_model_parallel_size
target_v = viewed[:, seg * tp_rank: seg * (tp_rank + 1), :].reshape(-1, args.hidden_size)
else:
target_v = v
model_split[k] = target_v
save_state_dict(args, [model_split], checkpoint_name)
elif (
args.target_tensor_model_parallel_size > 1
and args.target_pipeline_model_parallel_size == 1
and args.num_experts
and args.num_experts % args.target_expert_model_parallel_size == 0
):
for tp_rank in range(args.target_tensor_model_parallel_size):
for ep_rank in range(args.target_expert_model_parallel_size):
model_split = {}
checkpoint_name = get_checkpoint_name(save_path, 0, True, None, tp_rank, None, True, ep_rank)
for k, v in full_model.items():
if not isinstance(v, torch.Tensor):
target_v = v
elif 'linear_qkv.weight' in k and 'norm' not in k:
viewed = v.view(args.num_query_groups, -1, head_dim, args.hidden_size)
viewed = viewed[group_per_split * tp_rank: group_per_split * (tp_rank + 1)]
target_v = viewed.view(-1, args.hidden_size)
elif 'linear_qkv.bias' in k and 'norm' not in k:
viewed = v.view(args.num_query_groups, -1, head_dim)
viewed = viewed[group_per_split * tp_rank: group_per_split * (tp_rank + 1)]
target_v = viewed.view(-1)
elif 'linear_proj' in k:
seg = v.shape[1] // args.target_tensor_model_parallel_size
target_v = v[:, seg * tp_rank: seg * (tp_rank + 1)]
elif 'embedding' in k or 'output_layer' in k:
seg = v.shape[0] // args.target_tensor_model_parallel_size
target_v = v[seg * tp_rank: seg * (tp_rank + 1)]
elif 'local_experts' in k:
expert_rank = int(re.findall(pattern, k)[0])
if expert_rank // num_local_experts != ep_rank:
continue
expert_local_rank = expert_rank % num_local_experts
if 'linear_fc1' in k and 'norm' not in k:
viewed = v.view(-1, args.ffn_hidden_size, args.hidden_size)
seg = args.ffn_hidden_size // args.target_tensor_model_parallel_size
target_v = viewed[:, seg * tp_rank: seg * (tp_rank + 1), :].reshape(-1, args.hidden_size)
elif 'linear_fc2' in k:
seg = v.shape[1] // args.target_tensor_model_parallel_size
target_v = v[:, seg * tp_rank: seg * (tp_rank + 1)]
k = k.replace(f'local_experts.{expert_rank}', f'local_experts.{expert_local_rank}')
else:
target_v = v
model_split[k] = target_v
save_state_dict(args, [model_split], checkpoint_name)
else:
raise ValueError('not support pp convert')
print(f'megatron model is save to {save_path}')
def add_ckpt_args(parser):
parser = get_patch_args(parser)
parser = add_checkpointing_args(parser)
parser = add_megatron_checkpoint_args(parser)
parser = add_transformers_checkpoint_args(parser)
return parser
def main():
initialize_megatron(extra_args_provider=add_ckpt_args)
args = get_args()
hf_config, hf_model = create_huggingface_model(args)
mg_model = create_megatron_model(args, hf_config)
if args.convert_checkpoint_from_megatron_to_transformers:
load_megatron_model(args, mg_model)
convert_checkpoint_from_megatron_to_transformers(mg_model, hf_model, args)
args.save = args.save_path
args.save_safetensors = False
save_hfmodel(args, hf_model)
else:
hf_model.from_pretrained(args.load_path)
convert_checkpoint_from_transformers_to_megatron(mg_model, hf_model, args, hf_config)
save_mgmodel(args, mg_model, args.load_path, args.save_path)
if __name__ == "__main__":
main()