toolkits/sft_data_preprocessing/build_idxmap_sft_dataset.py (319 lines of code) (raw):
# Copyright (c) 2023 Alibaba PAI and Nvidia Megatron-LM Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import math
import json
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
os.path.pardir)))
import time
import gzip
import multiprocessing
from megatron.core.datasets import indexed_dataset
from megatron_patch.tokenizer import build_tokenizer
class Encoder(object):
def __init__(self, args):
self.args = args
self.seq_length = self.args.seq_length
def initializer(self):
Encoder.tokenizer = build_tokenizer(self.args)
def encode_blocked(self, datas):
return list(self.encode(datas))
def encode(self, datas):
if isinstance(datas, dict):
datas = [datas]
ids = {}
lens = {}
doc_ids = []
sentence_lens = []
label_ids = []
pad_token_id = self.tokenizer.pad_token_id
# NOTE: in SFT, any tokenizer is required to:
# (1) have a conversation chat_template
# (2) the generated assistant input_ids are after the system/user input_ids
# With (2), input_mask will be genarated
# WARNING: the seqlen of built idxmap dataset is 2x of input seqlen!!!!
for data in datas:
text = [
{'role': 'user', 'content': data["instruction"]+data['input']},
{'role': 'assistant', 'content': data['output']}
]
input_ids = self.tokenizer.apply_chat_template(text[:-1])
if len(input_ids) >= self.seq_length:
print('Extreme long user input, omitted...')
continue
all_ids = self.tokenizer.apply_chat_template(text)
if len(all_ids) >= self.seq_length:
print('Extreme long sequence, truncted...')
all_ids = all_ids[:self.seq_length]
for t1, t2 in zip(input_ids, all_ids):
assert t1 == t2, "The user input_ids are not a prefix of the full input_ids!"
y_ids = [-100] * (len(input_ids) - 1) + all_ids[len(input_ids):] + [-100]
all_ids[-1] = - 1 - all_ids[-1]
if sum(sentence_lens) + len(all_ids) > self.seq_length:
if self.seq_length > sum(sentence_lens):
doc_ids = doc_ids + [pad_token_id] * (self.seq_length - sum(sentence_lens))
label_ids = label_ids + [-100] * (self.seq_length - sum(sentence_lens))
ids['text'] = doc_ids + label_ids
lens['text'] = [len(doc_ids) * 2]
yield ids, lens, len(json.dumps(ids))
ids = {}
lens = {}
doc_ids = []
sentence_lens = []
label_ids = []
doc_ids.extend(all_ids)
label_ids.extend(y_ids)
sentence_lens.append(len(all_ids))
if sum(sentence_lens) > 0:
# Need Padding
if self.seq_length > sum(sentence_lens):
doc_ids = doc_ids + [pad_token_id] * (self.seq_length - sum(sentence_lens))
label_ids = label_ids + [-100] * (self.seq_length - sum(sentence_lens))
ids['text'] = doc_ids + label_ids
lens['text'] = [len(doc_ids) * 2]
yield ids, lens, len(json.dumps(ids))
class Partition(object):
def __init__(self, args, workers):
self.args = args
self.workers = workers
self.args = get_args()
def print_processing_stats(self, count, proc_start, total_bytes_processed):
if count % self.args.log_interval == 0:
current = time.time()
elapsed = current - proc_start
mbs = total_bytes_processed/elapsed/1024/1024
print(f"Processed {count} documents",
f"({count/elapsed} docs/s, {mbs} MB/s).",
file=sys.stderr)
def process_json_file(self, file_name):
input_file_name, output_prefix = file_name
print("Opening", input_file_name)
# json or jsonl
try:
with open(input_file_name, 'r', encoding='utf-8') as f:
fin = json.load(f)
except Exception:
fin = []
with open(input_file_name, 'r', encoding='utf-8') as f:
fin = [json.loads(d) for d in f.readlines()]
assert isinstance(fin, list)
# NOTE: each item in fin is a group (dict / list[dict]) of samples may be packed together
startup_start = time.time()
encoder = Encoder(self.args)
if self.args.sequence_packing:
# collect
tmp = []
for d in fin:
if isinstance(d, dict):
tmp.append(d)
else:
tmp.extend(d)
fin = tmp
encoder.initializer()
# NOTE: single thread for packing
print(f"Raw Dataset has {len(fin)} samples")
encoded_docs = (encoder.encode(fin),)
else:
if self.args.debug:
encoder.initializer()
encoded_docs = (encoder.encode_blocked(doc) for doc in fin)
else:
pool = multiprocessing.Pool(self.workers, initializer=encoder.initializer)
encoded_docs = pool.imap(encoder.encode_blocked, fin, 32)
tokenizer = build_tokenizer(self.args)
level = "document"
output_bin_files = {}
output_idx_files = {}
builders = {}
for key in self.args.json_keys:
output_bin_files[key] = "{}_{}_{}.bin".format(output_prefix,
key, level)
output_idx_files[key] = "{}_{}_{}.idx".format(output_prefix,
key, level)
builders[key] = indexed_dataset.IndexedDatasetBuilder(
output_bin_files[key],
dtype=indexed_dataset.DType.optimal_dtype(tokenizer.vocab_size),
)
startup_end = time.time()
proc_start = time.time()
total_bytes_processed = 0
print("Time to startup:", startup_end - startup_start)
cnt = 1
for datas in encoded_docs:
for (doc, sentence_lens, bytes_processed) in datas:
total_bytes_processed += bytes_processed
for key in doc.keys():
builders[key].add_document(doc[key], sentence_lens[key])
self.print_processing_stats(cnt, proc_start, total_bytes_processed)
cnt += 1
print(f"After pre-tokenizing, the idxmap dataset has {cnt - 1} samples")
builders[key].finalize(output_idx_files[key])
def get_args():
parser = argparse.ArgumentParser()
group = parser.add_argument_group(title='input data')
group.add_argument('--input', type=str, required=True,
help='Path to input JSON')
group.add_argument('--json-keys', nargs='+', default=['text'],
help='space separate listed of keys to extract from json')
group.add_argument('--keep-newlines', action='store_true',
help='Keep newlines between sentences when splitting.')
group = parser.add_argument_group(title='tokenizer')
group.add_argument('--tokenizer-type', type=str, required=False, default='GPT2BPETokenizer',
choices=['BertWordPieceLowerCase','BertWordPieceCase',
'GPT2BPETokenizer', 'SentencePieceTokenizer',
'GPTSentencePieceTokenizer', 'Llama2Tokenizer',
'NullTokenizer'],
help='What type of tokenizer to use.')
group.add_argument('--sequence-packing',action='store_true', help='packing sequence')
group.add_argument('--tokenizer-model', type=str, default=None,
help='YTTM tokenizer model.')
group.add_argument('--vocab-file', type=str, default=None,
help='Path to the vocab file')
group.add_argument('--vocab-size', default=786,
help='size of vocab for use with NullTokenizer')
group.add_argument('--merge-file', type=str, default=None,
help='Path to the BPE merge file (if necessary).')
group.add_argument('--append-eod', action='store_true',
help='Append an <eod> token to the end of a document.')
group.add_argument('--debug', action='store_true',
help='Append an <eod> token to the end of a document.')
group.add_argument('--lang', type=str, default='english',
help='Language to use for NLTK-powered sentence splitting.')
group = parser.add_argument_group(title='output data')
group.add_argument('--output-prefix', type=str, required=True,
help='Path to binary output file without suffix')
group = parser.add_argument_group(title='runtime')
group.add_argument('--workers', type=int, required=True,
help=('Number of worker processes to launch.'
'A good default for fast pre-processing '
'is: (workers * partitions) = available CPU cores.'))
group.add_argument('--partitions', type=int, default=1,
help='Number of file partitions')
group.add_argument('--log-interval', type=int, default=1000,
help='Interval between progress updates')
group.add_argument('--keep-sequential-samples', action='store_true',
help='Ensure ordering of samples in .jsonl files is '
'preserved when using partitions>1.')
group.add_argument(
'--patch-tokenizer-type',
type=str,
required=True,
choices=['Qwen2Tokenizer', 'LLamaTokenizer', 'DeepSeekV2Tokenizer', 'LLama3Tokenizer'],
help='What type of tokenizer to use.',
)
group.add_argument('--load',
type=str,
default=None,
help='path to tokenizer config file')
group.add_argument('--seq-length',
type=int,
default=2048,
help='sequence length')
group.add_argument('--extra-vocab-size',
type=int,
default=0,
help='extra_vocab_size')
args = parser.parse_args()
args.keep_empty = False
if args.tokenizer_type.lower().startswith('bert') and not args.split_sentences:
print("Are you sure you don't want to split sentences?")
if args.sequence_packing:
print('Use internal single-threaded sequence packing..')
# some default/dummy values for the tokenizer
args.rank = 1
args.make_vocab_size_divisible_by = 128
args.tensor_model_parallel_size = 1
args.vocab_extra_ids = 0
return args
def get_file_name(args, file_id):
file_name, extension = os.path.splitext(args.input)
input_file_name = file_name + "_" + str(file_id) + extension
sentence_split_file = file_name + "_ss_" + str(file_id) + extension
output_prefix = args.output_prefix + "_" + str(file_id)
file_names = {
'partition': input_file_name,
'sentence_split': sentence_split_file,
'output_prefix': output_prefix}
return file_names
def check_files_exist(in_ss_out_names, key, num_partitions):
for i in range(num_partitions):
if not os.path.exists(in_ss_out_names[i][key]):
return False
return True
def main():
args = get_args()
in_ss_out_names = []
if args.partitions == 1:
file_name, extension = os.path.splitext(args.input)
sentence_split_file = file_name + "_ss" + extension
file_names = {
'partition': args.input,
'sentence_split': sentence_split_file,
'output_prefix': args.output_prefix}
in_ss_out_names.append(file_names)
else:
file_list = os.listdir(args.input)
in_file_names = [os.path.join(args.input, file) for file in file_list]
# Count total number of lines across .jsonl files
if args.keep_sequential_samples:
total_sample_count = 0
for filename in in_file_names:
with open(filename, "r") as fin:
for fc, _ in enumerate(fin):
pass
total_sample_count += (fc + 1)
partition_size = math.ceil(total_sample_count / args.partitions)
# create .jsonl parition files
for idx in range(args.partitions):
in_ss_out_name = get_file_name(args, idx)
in_ss_out_names.append(in_ss_out_name)
# check to see if paritions were already created
partitions_present = check_files_exist(in_ss_out_names, 'partition', args.partitions)
# check to see if paritions with split sentences already created
split_sentences_present = check_files_exist(in_ss_out_names, 'sentence_split', args.partitions)
if not partitions_present and not split_sentences_present:
# populate .jsonl partition files from parent files
partitioned_input_files = []
for idx in range(args.partitions):
partitioned_input_file = open(in_ss_out_names[idx]['partition'], 'w')
partitioned_input_files.append(partitioned_input_file)
index = 0
if args.keep_sequential_samples: line_count = 0
for in_file_name in in_file_names:
# support for gzip files
if in_file_name.endswith(".gz"):
fin = gzip.open(in_file_name, 'rt')
else:
fin = open(in_file_name, 'r', encoding='utf-8')
for line in fin:
partitioned_input_files[index].write(line)
if args.keep_sequential_samples:
line_count += 1
if line_count % partition_size == 0:
index += 1
else:
index = (index + 1)%args.partitions
fin.close()
for idx in range(args.partitions):
partitioned_input_files[idx].close()
assert args.workers % args.partitions == 0
partition = Partition(args, args.workers//args.partitions)
# encode partition files in parallel
processes = []
input_key = 'partition'
for name in in_ss_out_names:
if args.debug:
partition.process_json_file((name[input_key], name['output_prefix']))
else:
p = multiprocessing.Process(target=partition.process_json_file,
args=((name[input_key], name['output_prefix']),))
p.start()
processes.append(p)
for p in processes:
p.join()
if args.partitions == 1:
return
# merge bin/idx partitions
level = "document"
output_bin_files = {}
output_idx_files = {}
builders = {}
tokenizer = build_tokenizer(args)
for key in args.json_keys:
output_bin_files[key] = "{}_{}_{}.bin".format(args.output_prefix,
key, level)
output_idx_files[key] = "{}_{}_{}.idx".format(args.output_prefix,
key, level)
builders[key] = indexed_dataset.IndexedDatasetBuilder(
output_bin_files[key],
dtype=indexed_dataset.DType.optimal_dtype(tokenizer.vocab_size),
)
for name in in_ss_out_names:
parition_output_prefix = name['output_prefix']
full_partition_output_prefix = "{}_{}_{}".format(parition_output_prefix,
key, level)
builders[key].add_index(full_partition_output_prefix)
builders[key].finalize(output_idx_files[key])
if __name__ == '__main__':
main()