models/efficientnet_v2_s.py [323:353]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self.features_37_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(256)
        self.features_38_conv_0 = torch.nn.modules.conv.Conv2d(256, 1536, 1, 1, 0, bias=False)
        self.features_38_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1536)
        self.features_38_conv_3 = torch.nn.modules.conv.Conv2d(1536, 1536, 3, 1, 1, groups=1536, bias=False)
        self.features_38_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1536)
        self.features_38_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
        self.features_38_conv_6_fc_0 = torch.nn.modules.linear.Linear(1536, 64)
        self.features_38_conv_6_fc_2 = torch.nn.modules.linear.Linear(64, 1536)
        self.features_38_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
        self.features_38_conv_7 = torch.nn.modules.conv.Conv2d(1536, 256, 1, 1, 0, bias=False)
        self.features_38_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(256)
        self.features_39_conv_0 = torch.nn.modules.conv.Conv2d(256, 1536, 1, 1, 0, bias=False)
        self.features_39_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1536)
        self.features_39_conv_3 = torch.nn.modules.conv.Conv2d(1536, 1536, 3, 1, 1, groups=1536, bias=False)
        self.features_39_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1536)
        self.features_39_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
        self.features_39_conv_6_fc_0 = torch.nn.modules.linear.Linear(1536, 64)
        self.features_39_conv_6_fc_2 = torch.nn.modules.linear.Linear(64, 1536)
        self.features_39_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
        self.features_39_conv_7 = torch.nn.modules.conv.Conv2d(1536, 256, 1, 1, 0, bias=False)
        self.features_39_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(256)
        self.features_40_conv_0 = torch.nn.modules.conv.Conv2d(256, 1536, 1, 1, 0, bias=False)
        self.features_40_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1536)
        self.features_40_conv_3 = torch.nn.modules.conv.Conv2d(1536, 1536, 3, 1, 1, groups=1536, bias=False)
        self.features_40_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1536)
        self.features_40_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
        self.features_40_conv_6_fc_0 = torch.nn.modules.linear.Linear(1536, 64)
        self.features_40_conv_6_fc_2 = torch.nn.modules.linear.Linear(64, 1536)
        self.features_40_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
        self.features_40_conv_7 = torch.nn.modules.conv.Conv2d(1536, 256, 1, 1, 0, bias=False)
        self.features_40_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(256)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



models/efficientnet_v2_xl.py [263:293]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self.features_37_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(256)
        self.features_38_conv_0 = torch.nn.modules.conv.Conv2d(256, 1536, 1, 1, 0, bias=False)
        self.features_38_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1536)
        self.features_38_conv_3 = torch.nn.modules.conv.Conv2d(1536, 1536, 3, 1, 1, groups=1536, bias=False)
        self.features_38_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1536)
        self.features_38_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
        self.features_38_conv_6_fc_0 = torch.nn.modules.linear.Linear(1536, 64)
        self.features_38_conv_6_fc_2 = torch.nn.modules.linear.Linear(64, 1536)
        self.features_38_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
        self.features_38_conv_7 = torch.nn.modules.conv.Conv2d(1536, 256, 1, 1, 0, bias=False)
        self.features_38_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(256)
        self.features_39_conv_0 = torch.nn.modules.conv.Conv2d(256, 1536, 1, 1, 0, bias=False)
        self.features_39_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1536)
        self.features_39_conv_3 = torch.nn.modules.conv.Conv2d(1536, 1536, 3, 1, 1, groups=1536, bias=False)
        self.features_39_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1536)
        self.features_39_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
        self.features_39_conv_6_fc_0 = torch.nn.modules.linear.Linear(1536, 64)
        self.features_39_conv_6_fc_2 = torch.nn.modules.linear.Linear(64, 1536)
        self.features_39_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
        self.features_39_conv_7 = torch.nn.modules.conv.Conv2d(1536, 256, 1, 1, 0, bias=False)
        self.features_39_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(256)
        self.features_40_conv_0 = torch.nn.modules.conv.Conv2d(256, 1536, 1, 1, 0, bias=False)
        self.features_40_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1536)
        self.features_40_conv_3 = torch.nn.modules.conv.Conv2d(1536, 1536, 3, 1, 1, groups=1536, bias=False)
        self.features_40_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1536)
        self.features_40_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
        self.features_40_conv_6_fc_0 = torch.nn.modules.linear.Linear(1536, 64)
        self.features_40_conv_6_fc_2 = torch.nn.modules.linear.Linear(64, 1536)
        self.features_40_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
        self.features_40_conv_7 = torch.nn.modules.conv.Conv2d(1536, 256, 1, 1, 0, bias=False)
        self.features_40_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(256)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



