models/efficientnet_v2_l.py [65:85]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self.features_13_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
        self.features_14_conv_0 = torch.nn.modules.conv.Conv2d(96, 384, 3, 1, 1, bias=False)
        self.features_14_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
        self.features_14_conv_3 = torch.nn.modules.conv.Conv2d(384, 96, 1, 1, 0, bias=False)
        self.features_14_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
        self.features_15_conv_0 = torch.nn.modules.conv.Conv2d(96, 384, 3, 1, 1, bias=False)
        self.features_15_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
        self.features_15_conv_3 = torch.nn.modules.conv.Conv2d(384, 96, 1, 1, 0, bias=False)
        self.features_15_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
        self.features_16_conv_0 = torch.nn.modules.conv.Conv2d(96, 384, 3, 1, 1, bias=False)
        self.features_16_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
        self.features_16_conv_3 = torch.nn.modules.conv.Conv2d(384, 96, 1, 1, 0, bias=False)
        self.features_16_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
        self.features_17_conv_0 = torch.nn.modules.conv.Conv2d(96, 384, 3, 1, 1, bias=False)
        self.features_17_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
        self.features_17_conv_3 = torch.nn.modules.conv.Conv2d(384, 96, 1, 1, 0, bias=False)
        self.features_17_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
        self.features_18_conv_0 = torch.nn.modules.conv.Conv2d(96, 384, 3, 1, 1, bias=False)
        self.features_18_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
        self.features_18_conv_3 = torch.nn.modules.conv.Conv2d(384, 96, 1, 1, 0, bias=False)
        self.features_18_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



models/efficientnet_v2_xl.py [65:85]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self.features_13_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
        self.features_14_conv_0 = torch.nn.modules.conv.Conv2d(96, 384, 3, 1, 1, bias=False)
        self.features_14_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
        self.features_14_conv_3 = torch.nn.modules.conv.Conv2d(384, 96, 1, 1, 0, bias=False)
        self.features_14_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
        self.features_15_conv_0 = torch.nn.modules.conv.Conv2d(96, 384, 3, 1, 1, bias=False)
        self.features_15_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
        self.features_15_conv_3 = torch.nn.modules.conv.Conv2d(384, 96, 1, 1, 0, bias=False)
        self.features_15_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
        self.features_16_conv_0 = torch.nn.modules.conv.Conv2d(96, 384, 3, 1, 1, bias=False)
        self.features_16_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
        self.features_16_conv_3 = torch.nn.modules.conv.Conv2d(384, 96, 1, 1, 0, bias=False)
        self.features_16_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
        self.features_17_conv_0 = torch.nn.modules.conv.Conv2d(96, 384, 3, 1, 1, bias=False)
        self.features_17_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
        self.features_17_conv_3 = torch.nn.modules.conv.Conv2d(384, 96, 1, 1, 0, bias=False)
        self.features_17_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
        self.features_18_conv_0 = torch.nn.modules.conv.Conv2d(96, 384, 3, 1, 1, bias=False)
        self.features_18_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
        self.features_18_conv_3 = torch.nn.modules.conv.Conv2d(384, 96, 1, 1, 0, bias=False)
        self.features_18_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



