def transform()

in tinynn/converter/operators/tflite/transformable.py [0:0]


    def transform(self, graph_converter, mapping):
        input_tensor = self.inputs[0]
        weight_tensor = self.inputs[1]

        input_dim = len(input_tensor.shape)
        weight_dim = len(weight_tensor.shape)

        prev_ops = []
        next_ops = []

        if weight_dim == 3 or input_dim == 3:
            reshape_input_size = 1
            reshape_output_size = 1
            if weight_dim == 3:
                self.stride.insert(0, 1)
                self.padding.insert(0, 0)
                self.dilation.insert(0, 1)
                self.output_padding.insert(0, 0)
                reshape_input_size = 2

            reshape_outputs = [
                self.create_transform_tensor(
                    np.expand_dims(t.tensor, 2),
                    name=f'{self.outputs[0].name}_{t.name}_4d_input',
                    quantization=t.quantization,
                )
                for t in self.inputs[:reshape_input_size]
            ]
            reshape_attrs = [self.create_attr_tensor(np.array(t.shape, dtype='int32')) for t in reshape_outputs]
            reshape_ops = [
                tfl_ops.ReshapeOperator([old, attr], [new], attr.tensor)
                for old, new, attr in zip(self.inputs[:reshape_input_size], reshape_outputs, reshape_attrs)
            ]

            for op in reshape_ops:
                op.extra_hints['direction'] = 'up'

            prev_ops.extend(reshape_ops)

            conv_outputs = [
                self.create_transform_tensor(
                    np.expand_dims(self.outputs[i].tensor, 2),
                    name=f'{self.outputs[i].name}_4d_output',
                    quantization=self.outputs[i].quantization,
                )
                for i in range(reshape_output_size)
            ]
            conv_attrs = [
                self.create_attr_tensor(np.array(t.shape, dtype='int32')) for t in self.outputs[:reshape_output_size]
            ]
            conv_ops = [
                tfl_ops.ReshapeOperator([old, attr], [new], attr.tensor)
                for old, new, attr in zip(conv_outputs, self.outputs[:reshape_output_size], conv_attrs)
            ]

            for op in conv_ops:
                op.extra_hints['direction'] = 'down'

            next_ops.extend(conv_ops)

            self.inputs = reshape_outputs + self.inputs[reshape_input_size:]
            self.outputs = conv_outputs + self.outputs[reshape_output_size:]

            weight_tensor = self.inputs[1]
        elif weight_dim not in (4, 5):
            assert False, "Only Conv[Transpose]1d/2d/3d is supported"

        if weight_tensor.shape[1] == 1 and weight_tensor.shape[0] == self.groups:
            if weight_dim in (3, 4):
                conv_op = tfl_ops.DepthwiseConv2dOperator(
                    self.inputs,
                    self.outputs,
                    strideH=self.stride[0],
                    strideW=self.stride[1],
                    depthMultiplier=1,
                    dilationHFactor=self.dilation[0],
                    dilationWFactor=self.dilation[1],
                    fusedActivationFunction=self.fusedActivationFunction,
                    padding=tflite.Padding.VALID,
                )
            else:
                assert False, "Only DepthwiseConv1d/2d is supported"
        else:
            if input_tensor.shape[1] != weight_tensor.shape[1]:
                warnings.warn(
                    'Group conv is not supported if official tflite interpreter is used. If that is the case for you,'
                    ' plese pass in `group_conv_rewrite=True`. If you want to run the model with TFLite micro, then you'
                    ' may also need to pass in `tflite_micro_rewrite=True`'
                )
            if weight_dim in (3, 4):
                conv_op = tfl_ops.Conv2dOperator(
                    self.inputs,
                    self.outputs,
                    strideH=self.stride[0],
                    strideW=self.stride[1],
                    dilationHFactor=self.dilation[0],
                    dilationWFactor=self.dilation[1],
                    fusedActivationFunction=self.fusedActivationFunction,
                    padding=tflite.Padding.VALID,
                )
            else:
                conv_op = tfl_ops.Conv3dOperator(
                    self.inputs,
                    self.outputs,
                    strideD=self.stride[0],
                    strideH=self.stride[1],
                    strideW=self.stride[2],
                    dilationDFactor=self.dilation[0],
                    dilationHFactor=self.dilation[1],
                    dilationWFactor=self.dilation[2],
                    fusedActivationFunction=self.fusedActivationFunction,
                    padding=tflite.Padding.VALID,
                )

        ops = self.wrap_ops_with_nhwc_nchw_transposes([conv_op])
        conv_op = ops[1]

        # Pad handling
        if sum(self.padding) > 0:
            if weight_dim in (3, 4):
                pad_h = self.padding[0]
                pad_w = self.padding[1]

                pad = [[0, 0], [pad_h, pad_h], [pad_w, pad_w], [0, 0]]
            else:
                pad_d = self.padding[0]
                pad_h = self.padding[1]
                pad_w = self.padding[2]

                pad = [[0, 0], [pad_d, pad_d], [pad_h, pad_h], [pad_w, pad_w], [0, 0]]

            pad_tensor = self.create_attr_tensor(np.array(pad, dtype='int32'))

            pad_input = ops[0].outputs[0]
            pad_array = np.pad(pad_input.tensor, pad)
            pad_out = self.create_transform_tensor(pad_array, quantization=pad_input.quantization)
            ops[1].inputs[0] = pad_out

            pad_op = tfl_ops.PadOperator([pad_input, pad_tensor], [pad_out])
            ops.insert(1, pad_op)

        # Weight handling
        weight = conv_op.inputs[1]
        if conv_op.op.code == tflite.BuiltinOperator.DEPTHWISE_CONV_2D:
            nchw2chwn_perm = np.array([1, 2, 3, 0], dtype='int32')
            nchw2chwn_perm_tensor = self.create_attr_tensor(nchw2chwn_perm)
            weight_q = weight.quantization
            if weight_q is not None and weight_q.dim is not None:
                new_dim = np.nonzero(nchw2chwn_perm == weight_q.dim)[0][0]
                weight_q = QuantizationParameters(weight_q.scale, weight_q.zero_point, new_dim)
            reordered_weight = self.create_transform_tensor(
                np.transpose(weight.tensor, nchw2chwn_perm), quantization=weight_q
            )
            conv_op.inputs[1] = reordered_weight
            reorder_op = tfl_ops.TransposeOperator([weight, nchw2chwn_perm_tensor], [reordered_weight])
        else:
            if weight_dim in (3, 4):
                nchw2nhwc_perm = np.array([0, 2, 3, 1], dtype='int32')
                nchw2nhwc_perm_tensor = self.create_attr_tensor(nchw2nhwc_perm)
            else:
                nchw2nhwc_perm = np.array([2, 3, 4, 1, 0], dtype='int32')
                nchw2nhwc_perm_tensor = self.create_attr_tensor(nchw2nhwc_perm)
            weight_q = weight.quantization
            if weight_q is not None and weight_q.dim is not None:
                new_dim = np.nonzero(nchw2nhwc_perm == weight_q.dim)[0][0]
                weight_q = QuantizationParameters(weight_q.scale, weight_q.zero_point, new_dim)
            reordered_weight = self.create_transform_tensor(
                np.transpose(weight.tensor, nchw2nhwc_perm), quantization=weight_q
            )
            conv_op.inputs[1] = reordered_weight
            reorder_op = tfl_ops.TransposeOperator([weight, nchw2nhwc_perm_tensor], [reordered_weight])
        ops.insert(1, reorder_op)

        # Bias handling
        kernel_num = self.inputs[1].shape[0]
        if conv_op.op.code in (tflite.BuiltinOperator.DEPTHWISE_CONV_2D, tflite.BuiltinOperator.CONV_3D):
            kernel_num = self.inputs[1].shape[-1]

        if len(conv_op.inputs) == 2 or conv_op.inputs[2] is None:
            if conv_op.inputs[0].dtype == np.dtype('float32'):
                bias = np.zeros((kernel_num,), dtype='float32')
                q_args = None
            else:
                bias = np.zeros((kernel_num,), dtype='int32')

                per_tensor = weight_tensor.quantization.dim is None

                # Bias handling
                if per_tensor:
                    bias_scale = input_tensor.quantization.scale * weight_tensor.quantization.scale
                    bias_zero_point = 0
                    bias_dim = None
                else:
                    bias_scale = [input_tensor.quantization.scale * s for s in weight_tensor.quantization.scale]
                    bias_zero_point = [0] * len(bias_scale)
                    bias_dim = 0

                q_args = QuantizationParameters(bias_scale, bias_zero_point, bias_dim)

            conv_op.inputs.append(self.create_attr_tensor(bias, quantization=q_args))
        elif conv_op.inputs[2].shape[0] != kernel_num and conv_op.inputs[2].shape[0] == 1:
            if conv_op.inputs[0].dtype == np.float32:
                bias = torch.tensor([conv_op.inputs[2][0]] * kernel_num, dtype='float32')
            else:
                bias = torch.tensor([conv_op.inputs[2][0]] * kernel_num, dtype='int32')

            conv_op.inputs[2] = self.create_attr_tensor(bias)

        ops = prev_ops + ops + next_ops

        for op in ops:
            graph_converter.add_operator(op, transform=True)

        graph_converter.try_restore_edges(mapping)

        for op in ops[:-1]:
            output_name = op.outputs[0].name
            node_name = graph_converter.tensor_node_map[output_name]
            node = graph_converter.graph.vs.find(name=node_name)
            assert node.outdegree() > 0, (
                'The following node should be a part of the transformable node,                 but the outdegree of'
                f' it is zero. {node}'
            )
            next_node = graph_converter.graph.vs[node.out_edges()[0].target]
            assert next_node['node_type'] != ExtendedOperator.CONSTANT_NODE