models/efficientnet_v2_l.py (2,116 lines of code) (raw):
import torch
import torch.nn
import torch.functional
import torch.nn.functional
class efficientnet_v2_l(torch.nn.Module):
def __init__(self):
super().__init__()
self.features_0_0 = torch.nn.modules.conv.Conv2d(3, 24, 3, 2, 1, bias=False)
self.features_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(24)
self.features_1_conv_0 = torch.nn.modules.conv.Conv2d(24, 24, 3, 1, 1, bias=False)
self.features_1_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(24)
self.features_1_conv_3 = torch.nn.modules.conv.Conv2d(24, 32, 1, 1, 0, bias=False)
self.features_1_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self.features_2_conv_0 = torch.nn.modules.conv.Conv2d(32, 32, 3, 1, 1, bias=False)
self.features_2_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self.features_2_conv_3 = torch.nn.modules.conv.Conv2d(32, 32, 1, 1, 0, bias=False)
self.features_2_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self.features_3_conv_0 = torch.nn.modules.conv.Conv2d(32, 32, 3, 1, 1, bias=False)
self.features_3_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self.features_3_conv_3 = torch.nn.modules.conv.Conv2d(32, 32, 1, 1, 0, bias=False)
self.features_3_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self.features_4_conv_0 = torch.nn.modules.conv.Conv2d(32, 32, 3, 1, 1, bias=False)
self.features_4_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self.features_4_conv_3 = torch.nn.modules.conv.Conv2d(32, 32, 1, 1, 0, bias=False)
self.features_4_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(32)
self.features_5_conv_0 = torch.nn.modules.conv.Conv2d(32, 128, 3, 2, 1, bias=False)
self.features_5_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(128)
self.features_5_conv_3 = torch.nn.modules.conv.Conv2d(128, 64, 1, 1, 0, bias=False)
self.features_5_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self.features_6_conv_0 = torch.nn.modules.conv.Conv2d(64, 256, 3, 1, 1, bias=False)
self.features_6_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(256)
self.features_6_conv_3 = torch.nn.modules.conv.Conv2d(256, 64, 1, 1, 0, bias=False)
self.features_6_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self.features_7_conv_0 = torch.nn.modules.conv.Conv2d(64, 256, 3, 1, 1, bias=False)
self.features_7_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(256)
self.features_7_conv_3 = torch.nn.modules.conv.Conv2d(256, 64, 1, 1, 0, bias=False)
self.features_7_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self.features_8_conv_0 = torch.nn.modules.conv.Conv2d(64, 256, 3, 1, 1, bias=False)
self.features_8_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(256)
self.features_8_conv_3 = torch.nn.modules.conv.Conv2d(256, 64, 1, 1, 0, bias=False)
self.features_8_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self.features_9_conv_0 = torch.nn.modules.conv.Conv2d(64, 256, 3, 1, 1, bias=False)
self.features_9_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(256)
self.features_9_conv_3 = torch.nn.modules.conv.Conv2d(256, 64, 1, 1, 0, bias=False)
self.features_9_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self.features_10_conv_0 = torch.nn.modules.conv.Conv2d(64, 256, 3, 1, 1, bias=False)
self.features_10_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(256)
self.features_10_conv_3 = torch.nn.modules.conv.Conv2d(256, 64, 1, 1, 0, bias=False)
self.features_10_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self.features_11_conv_0 = torch.nn.modules.conv.Conv2d(64, 256, 3, 1, 1, bias=False)
self.features_11_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(256)
self.features_11_conv_3 = torch.nn.modules.conv.Conv2d(256, 64, 1, 1, 0, bias=False)
self.features_11_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(64)
self.features_12_conv_0 = torch.nn.modules.conv.Conv2d(64, 256, 3, 2, 1, bias=False)
self.features_12_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(256)
self.features_12_conv_3 = torch.nn.modules.conv.Conv2d(256, 96, 1, 1, 0, bias=False)
self.features_12_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
self.features_13_conv_0 = torch.nn.modules.conv.Conv2d(96, 384, 3, 1, 1, bias=False)
self.features_13_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_13_conv_3 = torch.nn.modules.conv.Conv2d(384, 96, 1, 1, 0, bias=False)
self.features_13_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
self.features_14_conv_0 = torch.nn.modules.conv.Conv2d(96, 384, 3, 1, 1, bias=False)
self.features_14_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_14_conv_3 = torch.nn.modules.conv.Conv2d(384, 96, 1, 1, 0, bias=False)
self.features_14_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
self.features_15_conv_0 = torch.nn.modules.conv.Conv2d(96, 384, 3, 1, 1, bias=False)
self.features_15_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_15_conv_3 = torch.nn.modules.conv.Conv2d(384, 96, 1, 1, 0, bias=False)
self.features_15_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
self.features_16_conv_0 = torch.nn.modules.conv.Conv2d(96, 384, 3, 1, 1, bias=False)
self.features_16_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_16_conv_3 = torch.nn.modules.conv.Conv2d(384, 96, 1, 1, 0, bias=False)
self.features_16_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
self.features_17_conv_0 = torch.nn.modules.conv.Conv2d(96, 384, 3, 1, 1, bias=False)
self.features_17_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_17_conv_3 = torch.nn.modules.conv.Conv2d(384, 96, 1, 1, 0, bias=False)
self.features_17_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
self.features_18_conv_0 = torch.nn.modules.conv.Conv2d(96, 384, 3, 1, 1, bias=False)
self.features_18_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_18_conv_3 = torch.nn.modules.conv.Conv2d(384, 96, 1, 1, 0, bias=False)
self.features_18_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(96)
self.features_19_conv_0 = torch.nn.modules.conv.Conv2d(96, 384, 1, 1, 0, bias=False)
self.features_19_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_19_conv_3 = torch.nn.modules.conv.Conv2d(384, 384, 3, 2, 1, groups=384, bias=False)
self.features_19_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_19_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_19_conv_6_fc_0 = torch.nn.modules.linear.Linear(384, 24)
self.features_19_conv_6_fc_2 = torch.nn.modules.linear.Linear(24, 384)
self.features_19_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_19_conv_7 = torch.nn.modules.conv.Conv2d(384, 192, 1, 1, 0, bias=False)
self.features_19_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(192)
self.features_20_conv_0 = torch.nn.modules.conv.Conv2d(192, 768, 1, 1, 0, bias=False)
self.features_20_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(768)
self.features_20_conv_3 = torch.nn.modules.conv.Conv2d(768, 768, 3, 1, 1, groups=768, bias=False)
self.features_20_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(768)
self.features_20_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_20_conv_6_fc_0 = torch.nn.modules.linear.Linear(768, 48)
self.features_20_conv_6_fc_2 = torch.nn.modules.linear.Linear(48, 768)
self.features_20_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_20_conv_7 = torch.nn.modules.conv.Conv2d(768, 192, 1, 1, 0, bias=False)
self.features_20_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(192)
self.features_21_conv_0 = torch.nn.modules.conv.Conv2d(192, 768, 1, 1, 0, bias=False)
self.features_21_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(768)
self.features_21_conv_3 = torch.nn.modules.conv.Conv2d(768, 768, 3, 1, 1, groups=768, bias=False)
self.features_21_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(768)
self.features_21_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_21_conv_6_fc_0 = torch.nn.modules.linear.Linear(768, 48)
self.features_21_conv_6_fc_2 = torch.nn.modules.linear.Linear(48, 768)
self.features_21_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_21_conv_7 = torch.nn.modules.conv.Conv2d(768, 192, 1, 1, 0, bias=False)
self.features_21_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(192)
self.features_22_conv_0 = torch.nn.modules.conv.Conv2d(192, 768, 1, 1, 0, bias=False)
self.features_22_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(768)
self.features_22_conv_3 = torch.nn.modules.conv.Conv2d(768, 768, 3, 1, 1, groups=768, bias=False)
self.features_22_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(768)
self.features_22_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_22_conv_6_fc_0 = torch.nn.modules.linear.Linear(768, 48)
self.features_22_conv_6_fc_2 = torch.nn.modules.linear.Linear(48, 768)
self.features_22_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_22_conv_7 = torch.nn.modules.conv.Conv2d(768, 192, 1, 1, 0, bias=False)
self.features_22_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(192)
self.features_23_conv_0 = torch.nn.modules.conv.Conv2d(192, 768, 1, 1, 0, bias=False)
self.features_23_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(768)
self.features_23_conv_3 = torch.nn.modules.conv.Conv2d(768, 768, 3, 1, 1, groups=768, bias=False)
self.features_23_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(768)
self.features_23_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_23_conv_6_fc_0 = torch.nn.modules.linear.Linear(768, 48)
self.features_23_conv_6_fc_2 = torch.nn.modules.linear.Linear(48, 768)
self.features_23_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_23_conv_7 = torch.nn.modules.conv.Conv2d(768, 192, 1, 1, 0, bias=False)
self.features_23_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(192)
self.features_24_conv_0 = torch.nn.modules.conv.Conv2d(192, 768, 1, 1, 0, bias=False)
self.features_24_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(768)
self.features_24_conv_3 = torch.nn.modules.conv.Conv2d(768, 768, 3, 1, 1, groups=768, bias=False)
self.features_24_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(768)
self.features_24_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_24_conv_6_fc_0 = torch.nn.modules.linear.Linear(768, 48)
self.features_24_conv_6_fc_2 = torch.nn.modules.linear.Linear(48, 768)
self.features_24_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_24_conv_7 = torch.nn.modules.conv.Conv2d(768, 192, 1, 1, 0, bias=False)
self.features_24_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(192)
self.features_25_conv_0 = torch.nn.modules.conv.Conv2d(192, 768, 1, 1, 0, bias=False)
self.features_25_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(768)
self.features_25_conv_3 = torch.nn.modules.conv.Conv2d(768, 768, 3, 1, 1, groups=768, bias=False)
self.features_25_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(768)
self.features_25_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_25_conv_6_fc_0 = torch.nn.modules.linear.Linear(768, 48)
self.features_25_conv_6_fc_2 = torch.nn.modules.linear.Linear(48, 768)
self.features_25_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_25_conv_7 = torch.nn.modules.conv.Conv2d(768, 192, 1, 1, 0, bias=False)
self.features_25_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(192)
self.features_26_conv_0 = torch.nn.modules.conv.Conv2d(192, 768, 1, 1, 0, bias=False)
self.features_26_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(768)
self.features_26_conv_3 = torch.nn.modules.conv.Conv2d(768, 768, 3, 1, 1, groups=768, bias=False)
self.features_26_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(768)
self.features_26_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_26_conv_6_fc_0 = torch.nn.modules.linear.Linear(768, 48)
self.features_26_conv_6_fc_2 = torch.nn.modules.linear.Linear(48, 768)
self.features_26_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_26_conv_7 = torch.nn.modules.conv.Conv2d(768, 192, 1, 1, 0, bias=False)
self.features_26_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(192)
self.features_27_conv_0 = torch.nn.modules.conv.Conv2d(192, 768, 1, 1, 0, bias=False)
self.features_27_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(768)
self.features_27_conv_3 = torch.nn.modules.conv.Conv2d(768, 768, 3, 1, 1, groups=768, bias=False)
self.features_27_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(768)
self.features_27_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_27_conv_6_fc_0 = torch.nn.modules.linear.Linear(768, 48)
self.features_27_conv_6_fc_2 = torch.nn.modules.linear.Linear(48, 768)
self.features_27_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_27_conv_7 = torch.nn.modules.conv.Conv2d(768, 192, 1, 1, 0, bias=False)
self.features_27_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(192)
self.features_28_conv_0 = torch.nn.modules.conv.Conv2d(192, 768, 1, 1, 0, bias=False)
self.features_28_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(768)
self.features_28_conv_3 = torch.nn.modules.conv.Conv2d(768, 768, 3, 1, 1, groups=768, bias=False)
self.features_28_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(768)
self.features_28_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_28_conv_6_fc_0 = torch.nn.modules.linear.Linear(768, 48)
self.features_28_conv_6_fc_2 = torch.nn.modules.linear.Linear(48, 768)
self.features_28_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_28_conv_7 = torch.nn.modules.conv.Conv2d(768, 192, 1, 1, 0, bias=False)
self.features_28_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(192)
self.features_29_conv_0 = torch.nn.modules.conv.Conv2d(192, 1152, 1, 1, 0, bias=False)
self.features_29_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1152)
self.features_29_conv_3 = torch.nn.modules.conv.Conv2d(1152, 1152, 3, 1, 1, groups=1152, bias=False)
self.features_29_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1152)
self.features_29_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_29_conv_6_fc_0 = torch.nn.modules.linear.Linear(1152, 48)
self.features_29_conv_6_fc_2 = torch.nn.modules.linear.Linear(48, 1152)
self.features_29_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_29_conv_7 = torch.nn.modules.conv.Conv2d(1152, 224, 1, 1, 0, bias=False)
self.features_29_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(224)
self.features_30_conv_0 = torch.nn.modules.conv.Conv2d(224, 1344, 1, 1, 0, bias=False)
self.features_30_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_30_conv_3 = torch.nn.modules.conv.Conv2d(1344, 1344, 3, 1, 1, groups=1344, bias=False)
self.features_30_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_30_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_30_conv_6_fc_0 = torch.nn.modules.linear.Linear(1344, 56)
self.features_30_conv_6_fc_2 = torch.nn.modules.linear.Linear(56, 1344)
self.features_30_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_30_conv_7 = torch.nn.modules.conv.Conv2d(1344, 224, 1, 1, 0, bias=False)
self.features_30_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(224)
self.features_31_conv_0 = torch.nn.modules.conv.Conv2d(224, 1344, 1, 1, 0, bias=False)
self.features_31_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_31_conv_3 = torch.nn.modules.conv.Conv2d(1344, 1344, 3, 1, 1, groups=1344, bias=False)
self.features_31_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_31_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_31_conv_6_fc_0 = torch.nn.modules.linear.Linear(1344, 56)
self.features_31_conv_6_fc_2 = torch.nn.modules.linear.Linear(56, 1344)
self.features_31_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_31_conv_7 = torch.nn.modules.conv.Conv2d(1344, 224, 1, 1, 0, bias=False)
self.features_31_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(224)
self.features_32_conv_0 = torch.nn.modules.conv.Conv2d(224, 1344, 1, 1, 0, bias=False)
self.features_32_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_32_conv_3 = torch.nn.modules.conv.Conv2d(1344, 1344, 3, 1, 1, groups=1344, bias=False)
self.features_32_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_32_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_32_conv_6_fc_0 = torch.nn.modules.linear.Linear(1344, 56)
self.features_32_conv_6_fc_2 = torch.nn.modules.linear.Linear(56, 1344)
self.features_32_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_32_conv_7 = torch.nn.modules.conv.Conv2d(1344, 224, 1, 1, 0, bias=False)
self.features_32_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(224)
self.features_33_conv_0 = torch.nn.modules.conv.Conv2d(224, 1344, 1, 1, 0, bias=False)
self.features_33_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_33_conv_3 = torch.nn.modules.conv.Conv2d(1344, 1344, 3, 1, 1, groups=1344, bias=False)
self.features_33_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_33_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_33_conv_6_fc_0 = torch.nn.modules.linear.Linear(1344, 56)
self.features_33_conv_6_fc_2 = torch.nn.modules.linear.Linear(56, 1344)
self.features_33_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_33_conv_7 = torch.nn.modules.conv.Conv2d(1344, 224, 1, 1, 0, bias=False)
self.features_33_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(224)
self.features_34_conv_0 = torch.nn.modules.conv.Conv2d(224, 1344, 1, 1, 0, bias=False)
self.features_34_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_34_conv_3 = torch.nn.modules.conv.Conv2d(1344, 1344, 3, 1, 1, groups=1344, bias=False)
self.features_34_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_34_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_34_conv_6_fc_0 = torch.nn.modules.linear.Linear(1344, 56)
self.features_34_conv_6_fc_2 = torch.nn.modules.linear.Linear(56, 1344)
self.features_34_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_34_conv_7 = torch.nn.modules.conv.Conv2d(1344, 224, 1, 1, 0, bias=False)
self.features_34_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(224)
self.features_35_conv_0 = torch.nn.modules.conv.Conv2d(224, 1344, 1, 1, 0, bias=False)
self.features_35_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_35_conv_3 = torch.nn.modules.conv.Conv2d(1344, 1344, 3, 1, 1, groups=1344, bias=False)
self.features_35_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_35_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_35_conv_6_fc_0 = torch.nn.modules.linear.Linear(1344, 56)
self.features_35_conv_6_fc_2 = torch.nn.modules.linear.Linear(56, 1344)
self.features_35_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_35_conv_7 = torch.nn.modules.conv.Conv2d(1344, 224, 1, 1, 0, bias=False)
self.features_35_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(224)
self.features_36_conv_0 = torch.nn.modules.conv.Conv2d(224, 1344, 1, 1, 0, bias=False)
self.features_36_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_36_conv_3 = torch.nn.modules.conv.Conv2d(1344, 1344, 3, 1, 1, groups=1344, bias=False)
self.features_36_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_36_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_36_conv_6_fc_0 = torch.nn.modules.linear.Linear(1344, 56)
self.features_36_conv_6_fc_2 = torch.nn.modules.linear.Linear(56, 1344)
self.features_36_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_36_conv_7 = torch.nn.modules.conv.Conv2d(1344, 224, 1, 1, 0, bias=False)
self.features_36_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(224)
self.features_37_conv_0 = torch.nn.modules.conv.Conv2d(224, 1344, 1, 1, 0, bias=False)
self.features_37_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_37_conv_3 = torch.nn.modules.conv.Conv2d(1344, 1344, 3, 1, 1, groups=1344, bias=False)
self.features_37_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_37_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_37_conv_6_fc_0 = torch.nn.modules.linear.Linear(1344, 56)
self.features_37_conv_6_fc_2 = torch.nn.modules.linear.Linear(56, 1344)
self.features_37_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_37_conv_7 = torch.nn.modules.conv.Conv2d(1344, 224, 1, 1, 0, bias=False)
self.features_37_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(224)
self.features_38_conv_0 = torch.nn.modules.conv.Conv2d(224, 1344, 1, 1, 0, bias=False)
self.features_38_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_38_conv_3 = torch.nn.modules.conv.Conv2d(1344, 1344, 3, 1, 1, groups=1344, bias=False)
self.features_38_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_38_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_38_conv_6_fc_0 = torch.nn.modules.linear.Linear(1344, 56)
self.features_38_conv_6_fc_2 = torch.nn.modules.linear.Linear(56, 1344)
self.features_38_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_38_conv_7 = torch.nn.modules.conv.Conv2d(1344, 224, 1, 1, 0, bias=False)
self.features_38_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(224)
self.features_39_conv_0 = torch.nn.modules.conv.Conv2d(224, 1344, 1, 1, 0, bias=False)
self.features_39_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_39_conv_3 = torch.nn.modules.conv.Conv2d(1344, 1344, 3, 1, 1, groups=1344, bias=False)
self.features_39_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_39_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_39_conv_6_fc_0 = torch.nn.modules.linear.Linear(1344, 56)
self.features_39_conv_6_fc_2 = torch.nn.modules.linear.Linear(56, 1344)
self.features_39_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_39_conv_7 = torch.nn.modules.conv.Conv2d(1344, 224, 1, 1, 0, bias=False)
self.features_39_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(224)
self.features_40_conv_0 = torch.nn.modules.conv.Conv2d(224, 1344, 1, 1, 0, bias=False)
self.features_40_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_40_conv_3 = torch.nn.modules.conv.Conv2d(1344, 1344, 3, 1, 1, groups=1344, bias=False)
self.features_40_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_40_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_40_conv_6_fc_0 = torch.nn.modules.linear.Linear(1344, 56)
self.features_40_conv_6_fc_2 = torch.nn.modules.linear.Linear(56, 1344)
self.features_40_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_40_conv_7 = torch.nn.modules.conv.Conv2d(1344, 224, 1, 1, 0, bias=False)
self.features_40_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(224)
self.features_41_conv_0 = torch.nn.modules.conv.Conv2d(224, 1344, 1, 1, 0, bias=False)
self.features_41_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_41_conv_3 = torch.nn.modules.conv.Conv2d(1344, 1344, 3, 1, 1, groups=1344, bias=False)
self.features_41_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_41_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_41_conv_6_fc_0 = torch.nn.modules.linear.Linear(1344, 56)
self.features_41_conv_6_fc_2 = torch.nn.modules.linear.Linear(56, 1344)
self.features_41_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_41_conv_7 = torch.nn.modules.conv.Conv2d(1344, 224, 1, 1, 0, bias=False)
self.features_41_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(224)
self.features_42_conv_0 = torch.nn.modules.conv.Conv2d(224, 1344, 1, 1, 0, bias=False)
self.features_42_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_42_conv_3 = torch.nn.modules.conv.Conv2d(1344, 1344, 3, 1, 1, groups=1344, bias=False)
self.features_42_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_42_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_42_conv_6_fc_0 = torch.nn.modules.linear.Linear(1344, 56)
self.features_42_conv_6_fc_2 = torch.nn.modules.linear.Linear(56, 1344)
self.features_42_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_42_conv_7 = torch.nn.modules.conv.Conv2d(1344, 224, 1, 1, 0, bias=False)
self.features_42_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(224)
self.features_43_conv_0 = torch.nn.modules.conv.Conv2d(224, 1344, 1, 1, 0, bias=False)
self.features_43_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_43_conv_3 = torch.nn.modules.conv.Conv2d(1344, 1344, 3, 1, 1, groups=1344, bias=False)
self.features_43_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_43_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_43_conv_6_fc_0 = torch.nn.modules.linear.Linear(1344, 56)
self.features_43_conv_6_fc_2 = torch.nn.modules.linear.Linear(56, 1344)
self.features_43_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_43_conv_7 = torch.nn.modules.conv.Conv2d(1344, 224, 1, 1, 0, bias=False)
self.features_43_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(224)
self.features_44_conv_0 = torch.nn.modules.conv.Conv2d(224, 1344, 1, 1, 0, bias=False)
self.features_44_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_44_conv_3 = torch.nn.modules.conv.Conv2d(1344, 1344, 3, 1, 1, groups=1344, bias=False)
self.features_44_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_44_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_44_conv_6_fc_0 = torch.nn.modules.linear.Linear(1344, 56)
self.features_44_conv_6_fc_2 = torch.nn.modules.linear.Linear(56, 1344)
self.features_44_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_44_conv_7 = torch.nn.modules.conv.Conv2d(1344, 224, 1, 1, 0, bias=False)
self.features_44_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(224)
self.features_45_conv_0 = torch.nn.modules.conv.Conv2d(224, 1344, 1, 1, 0, bias=False)
self.features_45_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_45_conv_3 = torch.nn.modules.conv.Conv2d(1344, 1344, 3, 1, 1, groups=1344, bias=False)
self.features_45_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_45_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_45_conv_6_fc_0 = torch.nn.modules.linear.Linear(1344, 56)
self.features_45_conv_6_fc_2 = torch.nn.modules.linear.Linear(56, 1344)
self.features_45_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_45_conv_7 = torch.nn.modules.conv.Conv2d(1344, 224, 1, 1, 0, bias=False)
self.features_45_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(224)
self.features_46_conv_0 = torch.nn.modules.conv.Conv2d(224, 1344, 1, 1, 0, bias=False)
self.features_46_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_46_conv_3 = torch.nn.modules.conv.Conv2d(1344, 1344, 3, 1, 1, groups=1344, bias=False)
self.features_46_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_46_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_46_conv_6_fc_0 = torch.nn.modules.linear.Linear(1344, 56)
self.features_46_conv_6_fc_2 = torch.nn.modules.linear.Linear(56, 1344)
self.features_46_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_46_conv_7 = torch.nn.modules.conv.Conv2d(1344, 224, 1, 1, 0, bias=False)
self.features_46_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(224)
self.features_47_conv_0 = torch.nn.modules.conv.Conv2d(224, 1344, 1, 1, 0, bias=False)
self.features_47_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_47_conv_3 = torch.nn.modules.conv.Conv2d(1344, 1344, 3, 1, 1, groups=1344, bias=False)
self.features_47_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_47_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_47_conv_6_fc_0 = torch.nn.modules.linear.Linear(1344, 56)
self.features_47_conv_6_fc_2 = torch.nn.modules.linear.Linear(56, 1344)
self.features_47_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_47_conv_7 = torch.nn.modules.conv.Conv2d(1344, 224, 1, 1, 0, bias=False)
self.features_47_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(224)
self.features_48_conv_0 = torch.nn.modules.conv.Conv2d(224, 1344, 1, 1, 0, bias=False)
self.features_48_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_48_conv_3 = torch.nn.modules.conv.Conv2d(1344, 1344, 3, 2, 1, groups=1344, bias=False)
self.features_48_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(1344)
self.features_48_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_48_conv_6_fc_0 = torch.nn.modules.linear.Linear(1344, 56)
self.features_48_conv_6_fc_2 = torch.nn.modules.linear.Linear(56, 1344)
self.features_48_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_48_conv_7 = torch.nn.modules.conv.Conv2d(1344, 384, 1, 1, 0, bias=False)
self.features_48_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_49_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_49_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_49_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_49_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_49_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_49_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_49_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_49_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_49_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_49_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_50_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_50_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_50_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_50_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_50_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_50_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_50_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_50_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_50_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_50_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_51_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_51_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_51_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_51_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_51_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_51_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_51_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_51_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_51_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_51_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_52_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_52_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_52_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_52_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_52_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_52_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_52_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_52_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_52_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_52_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_53_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_53_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_53_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_53_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_53_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_53_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_53_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_53_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_53_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_53_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_54_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_54_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_54_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_54_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_54_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_54_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_54_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_54_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_54_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_54_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_55_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_55_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_55_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_55_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_55_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_55_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_55_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_55_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_55_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_55_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_56_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_56_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_56_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_56_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_56_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_56_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_56_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_56_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_56_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_56_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_57_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_57_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_57_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_57_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_57_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_57_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_57_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_57_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_57_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_57_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_58_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_58_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_58_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_58_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_58_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_58_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_58_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_58_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_58_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_58_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_59_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_59_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_59_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_59_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_59_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_59_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_59_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_59_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_59_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_59_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_60_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_60_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_60_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_60_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_60_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_60_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_60_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_60_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_60_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_60_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_61_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_61_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_61_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_61_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_61_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_61_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_61_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_61_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_61_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_61_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_62_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_62_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_62_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_62_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_62_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_62_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_62_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_62_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_62_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_62_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_63_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_63_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_63_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_63_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_63_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_63_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_63_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_63_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_63_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_63_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_64_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_64_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_64_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_64_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_64_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_64_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_64_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_64_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_64_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_64_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_65_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_65_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_65_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_65_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_65_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_65_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_65_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_65_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_65_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_65_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_66_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_66_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_66_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_66_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_66_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_66_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_66_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_66_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_66_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_66_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_67_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_67_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_67_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_67_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_67_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_67_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_67_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_67_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_67_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_67_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_68_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_68_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_68_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_68_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_68_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_68_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_68_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_68_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_68_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_68_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_69_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_69_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_69_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_69_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_69_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_69_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_69_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_69_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_69_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_69_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_70_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_70_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_70_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_70_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_70_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_70_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_70_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_70_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_70_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_70_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_71_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_71_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_71_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_71_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_71_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_71_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_71_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_71_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_71_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_71_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_72_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_72_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_72_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_72_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_72_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_72_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_72_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_72_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_72_conv_7 = torch.nn.modules.conv.Conv2d(2304, 384, 1, 1, 0, bias=False)
self.features_72_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(384)
self.features_73_conv_0 = torch.nn.modules.conv.Conv2d(384, 2304, 1, 1, 0, bias=False)
self.features_73_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_73_conv_3 = torch.nn.modules.conv.Conv2d(2304, 2304, 3, 1, 1, groups=2304, bias=False)
self.features_73_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(2304)
self.features_73_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_73_conv_6_fc_0 = torch.nn.modules.linear.Linear(2304, 96)
self.features_73_conv_6_fc_2 = torch.nn.modules.linear.Linear(96, 2304)
self.features_73_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_73_conv_7 = torch.nn.modules.conv.Conv2d(2304, 640, 1, 1, 0, bias=False)
self.features_73_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(640)
self.features_74_conv_0 = torch.nn.modules.conv.Conv2d(640, 3840, 1, 1, 0, bias=False)
self.features_74_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(3840)
self.features_74_conv_3 = torch.nn.modules.conv.Conv2d(3840, 3840, 3, 1, 1, groups=3840, bias=False)
self.features_74_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(3840)
self.features_74_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_74_conv_6_fc_0 = torch.nn.modules.linear.Linear(3840, 160)
self.features_74_conv_6_fc_2 = torch.nn.modules.linear.Linear(160, 3840)
self.features_74_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_74_conv_7 = torch.nn.modules.conv.Conv2d(3840, 640, 1, 1, 0, bias=False)
self.features_74_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(640)
self.features_75_conv_0 = torch.nn.modules.conv.Conv2d(640, 3840, 1, 1, 0, bias=False)
self.features_75_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(3840)
self.features_75_conv_3 = torch.nn.modules.conv.Conv2d(3840, 3840, 3, 1, 1, groups=3840, bias=False)
self.features_75_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(3840)
self.features_75_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_75_conv_6_fc_0 = torch.nn.modules.linear.Linear(3840, 160)
self.features_75_conv_6_fc_2 = torch.nn.modules.linear.Linear(160, 3840)
self.features_75_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_75_conv_7 = torch.nn.modules.conv.Conv2d(3840, 640, 1, 1, 0, bias=False)
self.features_75_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(640)
self.features_76_conv_0 = torch.nn.modules.conv.Conv2d(640, 3840, 1, 1, 0, bias=False)
self.features_76_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(3840)
self.features_76_conv_3 = torch.nn.modules.conv.Conv2d(3840, 3840, 3, 1, 1, groups=3840, bias=False)
self.features_76_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(3840)
self.features_76_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_76_conv_6_fc_0 = torch.nn.modules.linear.Linear(3840, 160)
self.features_76_conv_6_fc_2 = torch.nn.modules.linear.Linear(160, 3840)
self.features_76_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_76_conv_7 = torch.nn.modules.conv.Conv2d(3840, 640, 1, 1, 0, bias=False)
self.features_76_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(640)
self.features_77_conv_0 = torch.nn.modules.conv.Conv2d(640, 3840, 1, 1, 0, bias=False)
self.features_77_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(3840)
self.features_77_conv_3 = torch.nn.modules.conv.Conv2d(3840, 3840, 3, 1, 1, groups=3840, bias=False)
self.features_77_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(3840)
self.features_77_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_77_conv_6_fc_0 = torch.nn.modules.linear.Linear(3840, 160)
self.features_77_conv_6_fc_2 = torch.nn.modules.linear.Linear(160, 3840)
self.features_77_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_77_conv_7 = torch.nn.modules.conv.Conv2d(3840, 640, 1, 1, 0, bias=False)
self.features_77_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(640)
self.features_78_conv_0 = torch.nn.modules.conv.Conv2d(640, 3840, 1, 1, 0, bias=False)
self.features_78_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(3840)
self.features_78_conv_3 = torch.nn.modules.conv.Conv2d(3840, 3840, 3, 1, 1, groups=3840, bias=False)
self.features_78_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(3840)
self.features_78_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_78_conv_6_fc_0 = torch.nn.modules.linear.Linear(3840, 160)
self.features_78_conv_6_fc_2 = torch.nn.modules.linear.Linear(160, 3840)
self.features_78_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_78_conv_7 = torch.nn.modules.conv.Conv2d(3840, 640, 1, 1, 0, bias=False)
self.features_78_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(640)
self.features_79_conv_0 = torch.nn.modules.conv.Conv2d(640, 3840, 1, 1, 0, bias=False)
self.features_79_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(3840)
self.features_79_conv_3 = torch.nn.modules.conv.Conv2d(3840, 3840, 3, 1, 1, groups=3840, bias=False)
self.features_79_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(3840)
self.features_79_conv_6_avg_pool = torch.nn.modules.pooling.AdaptiveAvgPool2d(1)
self.features_79_conv_6_fc_0 = torch.nn.modules.linear.Linear(3840, 160)
self.features_79_conv_6_fc_2 = torch.nn.modules.linear.Linear(160, 3840)
self.features_79_conv_6_fc_3 = torch.nn.modules.activation.Sigmoid()
self.features_79_conv_7 = torch.nn.modules.conv.Conv2d(3840, 640, 1, 1, 0, bias=False)
self.features_79_conv_8 = torch.nn.modules.batchnorm.BatchNorm2d(640)
self.conv_0 = torch.nn.modules.conv.Conv2d(640, 1792, 1, 1, 0, bias=False)
self.conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(1792)
self.avgpool = torch.nn.modules.pooling.AdaptiveAvgPool2d((1, 1))
self.classifier = torch.nn.modules.linear.Linear(1792, 1000)
def forward(self, input_1):
features_0_0 = self.features_0_0(input_1)
features_0_1 = self.features_0_1(features_0_0)
sigmoid_1 = torch.sigmoid(features_0_1)
mul_1 = features_0_1.__mul__(sigmoid_1)
features_1_conv_0 = self.features_1_conv_0(mul_1)
features_1_conv_1 = self.features_1_conv_1(features_1_conv_0)
sigmoid_2 = torch.sigmoid(features_1_conv_1)
mul_2 = features_1_conv_1.__mul__(sigmoid_2)
features_1_conv_3 = self.features_1_conv_3(mul_2)
features_1_conv_4 = self.features_1_conv_4(features_1_conv_3)
features_2_conv_0 = self.features_2_conv_0(features_1_conv_4)
features_2_conv_1 = self.features_2_conv_1(features_2_conv_0)
sigmoid_3 = torch.sigmoid(features_2_conv_1)
mul_3 = features_2_conv_1.__mul__(sigmoid_3)
features_2_conv_3 = self.features_2_conv_3(mul_3)
features_2_conv_4 = self.features_2_conv_4(features_2_conv_3)
add_1 = features_1_conv_4.__add__(features_2_conv_4)
features_3_conv_0 = self.features_3_conv_0(add_1)
features_3_conv_1 = self.features_3_conv_1(features_3_conv_0)
sigmoid_4 = torch.sigmoid(features_3_conv_1)
mul_4 = features_3_conv_1.__mul__(sigmoid_4)
features_3_conv_3 = self.features_3_conv_3(mul_4)
features_3_conv_4 = self.features_3_conv_4(features_3_conv_3)
add_2 = add_1.__add__(features_3_conv_4)
features_4_conv_0 = self.features_4_conv_0(add_2)
features_4_conv_1 = self.features_4_conv_1(features_4_conv_0)
sigmoid_5 = torch.sigmoid(features_4_conv_1)
mul_5 = features_4_conv_1.__mul__(sigmoid_5)
features_4_conv_3 = self.features_4_conv_3(mul_5)
features_4_conv_4 = self.features_4_conv_4(features_4_conv_3)
add_3 = add_2.__add__(features_4_conv_4)
features_5_conv_0 = self.features_5_conv_0(add_3)
features_5_conv_1 = self.features_5_conv_1(features_5_conv_0)
sigmoid_6 = torch.sigmoid(features_5_conv_1)
mul_6 = features_5_conv_1.__mul__(sigmoid_6)
features_5_conv_3 = self.features_5_conv_3(mul_6)
features_5_conv_4 = self.features_5_conv_4(features_5_conv_3)
features_6_conv_0 = self.features_6_conv_0(features_5_conv_4)
features_6_conv_1 = self.features_6_conv_1(features_6_conv_0)
sigmoid_7 = torch.sigmoid(features_6_conv_1)
mul_7 = features_6_conv_1.__mul__(sigmoid_7)
features_6_conv_3 = self.features_6_conv_3(mul_7)
features_6_conv_4 = self.features_6_conv_4(features_6_conv_3)
add_4 = features_5_conv_4.__add__(features_6_conv_4)
features_7_conv_0 = self.features_7_conv_0(add_4)
features_7_conv_1 = self.features_7_conv_1(features_7_conv_0)
sigmoid_8 = torch.sigmoid(features_7_conv_1)
mul_8 = features_7_conv_1.__mul__(sigmoid_8)
features_7_conv_3 = self.features_7_conv_3(mul_8)
features_7_conv_4 = self.features_7_conv_4(features_7_conv_3)
add_5 = add_4.__add__(features_7_conv_4)
features_8_conv_0 = self.features_8_conv_0(add_5)
features_8_conv_1 = self.features_8_conv_1(features_8_conv_0)
sigmoid_9 = torch.sigmoid(features_8_conv_1)
mul_9 = features_8_conv_1.__mul__(sigmoid_9)
features_8_conv_3 = self.features_8_conv_3(mul_9)
features_8_conv_4 = self.features_8_conv_4(features_8_conv_3)
add_6 = add_5.__add__(features_8_conv_4)
features_9_conv_0 = self.features_9_conv_0(add_6)
features_9_conv_1 = self.features_9_conv_1(features_9_conv_0)
sigmoid_10 = torch.sigmoid(features_9_conv_1)
mul_10 = features_9_conv_1.__mul__(sigmoid_10)
features_9_conv_3 = self.features_9_conv_3(mul_10)
features_9_conv_4 = self.features_9_conv_4(features_9_conv_3)
add_7 = add_6.__add__(features_9_conv_4)
features_10_conv_0 = self.features_10_conv_0(add_7)
features_10_conv_1 = self.features_10_conv_1(features_10_conv_0)
sigmoid_11 = torch.sigmoid(features_10_conv_1)
mul_11 = features_10_conv_1.__mul__(sigmoid_11)
features_10_conv_3 = self.features_10_conv_3(mul_11)
features_10_conv_4 = self.features_10_conv_4(features_10_conv_3)
add_8 = add_7.__add__(features_10_conv_4)
features_11_conv_0 = self.features_11_conv_0(add_8)
features_11_conv_1 = self.features_11_conv_1(features_11_conv_0)
sigmoid_12 = torch.sigmoid(features_11_conv_1)
mul_12 = features_11_conv_1.__mul__(sigmoid_12)
features_11_conv_3 = self.features_11_conv_3(mul_12)
features_11_conv_4 = self.features_11_conv_4(features_11_conv_3)
add_9 = add_8.__add__(features_11_conv_4)
features_12_conv_0 = self.features_12_conv_0(add_9)
features_12_conv_1 = self.features_12_conv_1(features_12_conv_0)
sigmoid_13 = torch.sigmoid(features_12_conv_1)
mul_13 = features_12_conv_1.__mul__(sigmoid_13)
features_12_conv_3 = self.features_12_conv_3(mul_13)
features_12_conv_4 = self.features_12_conv_4(features_12_conv_3)
features_13_conv_0 = self.features_13_conv_0(features_12_conv_4)
features_13_conv_1 = self.features_13_conv_1(features_13_conv_0)
sigmoid_14 = torch.sigmoid(features_13_conv_1)
mul_14 = features_13_conv_1.__mul__(sigmoid_14)
features_13_conv_3 = self.features_13_conv_3(mul_14)
features_13_conv_4 = self.features_13_conv_4(features_13_conv_3)
add_10 = features_12_conv_4.__add__(features_13_conv_4)
features_14_conv_0 = self.features_14_conv_0(add_10)
features_14_conv_1 = self.features_14_conv_1(features_14_conv_0)
sigmoid_15 = torch.sigmoid(features_14_conv_1)
mul_15 = features_14_conv_1.__mul__(sigmoid_15)
features_14_conv_3 = self.features_14_conv_3(mul_15)
features_14_conv_4 = self.features_14_conv_4(features_14_conv_3)
add_11 = add_10.__add__(features_14_conv_4)
features_15_conv_0 = self.features_15_conv_0(add_11)
features_15_conv_1 = self.features_15_conv_1(features_15_conv_0)
sigmoid_16 = torch.sigmoid(features_15_conv_1)
mul_16 = features_15_conv_1.__mul__(sigmoid_16)
features_15_conv_3 = self.features_15_conv_3(mul_16)
features_15_conv_4 = self.features_15_conv_4(features_15_conv_3)
add_12 = add_11.__add__(features_15_conv_4)
features_16_conv_0 = self.features_16_conv_0(add_12)
features_16_conv_1 = self.features_16_conv_1(features_16_conv_0)
sigmoid_17 = torch.sigmoid(features_16_conv_1)
mul_17 = features_16_conv_1.__mul__(sigmoid_17)
features_16_conv_3 = self.features_16_conv_3(mul_17)
features_16_conv_4 = self.features_16_conv_4(features_16_conv_3)
add_13 = add_12.__add__(features_16_conv_4)
features_17_conv_0 = self.features_17_conv_0(add_13)
features_17_conv_1 = self.features_17_conv_1(features_17_conv_0)
sigmoid_18 = torch.sigmoid(features_17_conv_1)
mul_18 = features_17_conv_1.__mul__(sigmoid_18)
features_17_conv_3 = self.features_17_conv_3(mul_18)
features_17_conv_4 = self.features_17_conv_4(features_17_conv_3)
add_14 = add_13.__add__(features_17_conv_4)
features_18_conv_0 = self.features_18_conv_0(add_14)
features_18_conv_1 = self.features_18_conv_1(features_18_conv_0)
sigmoid_19 = torch.sigmoid(features_18_conv_1)
mul_19 = features_18_conv_1.__mul__(sigmoid_19)
features_18_conv_3 = self.features_18_conv_3(mul_19)
features_18_conv_4 = self.features_18_conv_4(features_18_conv_3)
add_15 = add_14.__add__(features_18_conv_4)
features_19_conv_0 = self.features_19_conv_0(add_15)
features_19_conv_1 = self.features_19_conv_1(features_19_conv_0)
sigmoid_20 = torch.sigmoid(features_19_conv_1)
mul_20 = features_19_conv_1.__mul__(sigmoid_20)
features_19_conv_3 = self.features_19_conv_3(mul_20)
features_19_conv_4 = self.features_19_conv_4(features_19_conv_3)
sigmoid_21 = torch.sigmoid(features_19_conv_4)
mul_21 = features_19_conv_4.__mul__(sigmoid_21)
size_1 = mul_21.size()
features_19_conv_6_avg_pool = self.features_19_conv_6_avg_pool(mul_21)
view_1 = features_19_conv_6_avg_pool.view(size_1[0], size_1[1])
features_19_conv_6_fc_0 = self.features_19_conv_6_fc_0(view_1)
sigmoid_22 = torch.sigmoid(features_19_conv_6_fc_0)
mul_22 = features_19_conv_6_fc_0.__mul__(sigmoid_22)
features_19_conv_6_fc_2 = self.features_19_conv_6_fc_2(mul_22)
features_19_conv_6_fc_3 = self.features_19_conv_6_fc_3(features_19_conv_6_fc_2)
view_2 = features_19_conv_6_fc_3.view(size_1[0], size_1[1], 1, 1)
mul_23 = mul_21.__mul__(view_2)
features_19_conv_7 = self.features_19_conv_7(mul_23)
features_19_conv_8 = self.features_19_conv_8(features_19_conv_7)
features_20_conv_0 = self.features_20_conv_0(features_19_conv_8)
features_20_conv_1 = self.features_20_conv_1(features_20_conv_0)
sigmoid_23 = torch.sigmoid(features_20_conv_1)
mul_24 = features_20_conv_1.__mul__(sigmoid_23)
features_20_conv_3 = self.features_20_conv_3(mul_24)
features_20_conv_4 = self.features_20_conv_4(features_20_conv_3)
sigmoid_24 = torch.sigmoid(features_20_conv_4)
mul_25 = features_20_conv_4.__mul__(sigmoid_24)
size_2 = mul_25.size()
features_20_conv_6_avg_pool = self.features_20_conv_6_avg_pool(mul_25)
view_3 = features_20_conv_6_avg_pool.view(size_2[0], size_2[1])
features_20_conv_6_fc_0 = self.features_20_conv_6_fc_0(view_3)
sigmoid_25 = torch.sigmoid(features_20_conv_6_fc_0)
mul_26 = features_20_conv_6_fc_0.__mul__(sigmoid_25)
features_20_conv_6_fc_2 = self.features_20_conv_6_fc_2(mul_26)
features_20_conv_6_fc_3 = self.features_20_conv_6_fc_3(features_20_conv_6_fc_2)
view_4 = features_20_conv_6_fc_3.view(size_2[0], size_2[1], 1, 1)
mul_27 = mul_25.__mul__(view_4)
features_20_conv_7 = self.features_20_conv_7(mul_27)
features_20_conv_8 = self.features_20_conv_8(features_20_conv_7)
add_16 = features_19_conv_8.__add__(features_20_conv_8)
features_21_conv_0 = self.features_21_conv_0(add_16)
features_21_conv_1 = self.features_21_conv_1(features_21_conv_0)
sigmoid_26 = torch.sigmoid(features_21_conv_1)
mul_28 = features_21_conv_1.__mul__(sigmoid_26)
features_21_conv_3 = self.features_21_conv_3(mul_28)
features_21_conv_4 = self.features_21_conv_4(features_21_conv_3)
sigmoid_27 = torch.sigmoid(features_21_conv_4)
mul_29 = features_21_conv_4.__mul__(sigmoid_27)
size_3 = mul_29.size()
features_21_conv_6_avg_pool = self.features_21_conv_6_avg_pool(mul_29)
view_5 = features_21_conv_6_avg_pool.view(size_3[0], size_3[1])
features_21_conv_6_fc_0 = self.features_21_conv_6_fc_0(view_5)
sigmoid_28 = torch.sigmoid(features_21_conv_6_fc_0)
mul_30 = features_21_conv_6_fc_0.__mul__(sigmoid_28)
features_21_conv_6_fc_2 = self.features_21_conv_6_fc_2(mul_30)
features_21_conv_6_fc_3 = self.features_21_conv_6_fc_3(features_21_conv_6_fc_2)
view_6 = features_21_conv_6_fc_3.view(size_3[0], size_3[1], 1, 1)
mul_31 = mul_29.__mul__(view_6)
features_21_conv_7 = self.features_21_conv_7(mul_31)
features_21_conv_8 = self.features_21_conv_8(features_21_conv_7)
add_17 = add_16.__add__(features_21_conv_8)
features_22_conv_0 = self.features_22_conv_0(add_17)
features_22_conv_1 = self.features_22_conv_1(features_22_conv_0)
sigmoid_29 = torch.sigmoid(features_22_conv_1)
mul_32 = features_22_conv_1.__mul__(sigmoid_29)
features_22_conv_3 = self.features_22_conv_3(mul_32)
features_22_conv_4 = self.features_22_conv_4(features_22_conv_3)
sigmoid_30 = torch.sigmoid(features_22_conv_4)
mul_33 = features_22_conv_4.__mul__(sigmoid_30)
size_4 = mul_33.size()
features_22_conv_6_avg_pool = self.features_22_conv_6_avg_pool(mul_33)
view_7 = features_22_conv_6_avg_pool.view(size_4[0], size_4[1])
features_22_conv_6_fc_0 = self.features_22_conv_6_fc_0(view_7)
sigmoid_31 = torch.sigmoid(features_22_conv_6_fc_0)
mul_34 = features_22_conv_6_fc_0.__mul__(sigmoid_31)
features_22_conv_6_fc_2 = self.features_22_conv_6_fc_2(mul_34)
features_22_conv_6_fc_3 = self.features_22_conv_6_fc_3(features_22_conv_6_fc_2)
view_8 = features_22_conv_6_fc_3.view(size_4[0], size_4[1], 1, 1)
mul_35 = mul_33.__mul__(view_8)
features_22_conv_7 = self.features_22_conv_7(mul_35)
features_22_conv_8 = self.features_22_conv_8(features_22_conv_7)
add_18 = add_17.__add__(features_22_conv_8)
features_23_conv_0 = self.features_23_conv_0(add_18)
features_23_conv_1 = self.features_23_conv_1(features_23_conv_0)
sigmoid_32 = torch.sigmoid(features_23_conv_1)
mul_36 = features_23_conv_1.__mul__(sigmoid_32)
features_23_conv_3 = self.features_23_conv_3(mul_36)
features_23_conv_4 = self.features_23_conv_4(features_23_conv_3)
sigmoid_33 = torch.sigmoid(features_23_conv_4)
mul_37 = features_23_conv_4.__mul__(sigmoid_33)
size_5 = mul_37.size()
features_23_conv_6_avg_pool = self.features_23_conv_6_avg_pool(mul_37)
view_9 = features_23_conv_6_avg_pool.view(size_5[0], size_5[1])
features_23_conv_6_fc_0 = self.features_23_conv_6_fc_0(view_9)
sigmoid_34 = torch.sigmoid(features_23_conv_6_fc_0)
mul_38 = features_23_conv_6_fc_0.__mul__(sigmoid_34)
features_23_conv_6_fc_2 = self.features_23_conv_6_fc_2(mul_38)
features_23_conv_6_fc_3 = self.features_23_conv_6_fc_3(features_23_conv_6_fc_2)
view_10 = features_23_conv_6_fc_3.view(size_5[0], size_5[1], 1, 1)
mul_39 = mul_37.__mul__(view_10)
features_23_conv_7 = self.features_23_conv_7(mul_39)
features_23_conv_8 = self.features_23_conv_8(features_23_conv_7)
add_19 = add_18.__add__(features_23_conv_8)
features_24_conv_0 = self.features_24_conv_0(add_19)
features_24_conv_1 = self.features_24_conv_1(features_24_conv_0)
sigmoid_35 = torch.sigmoid(features_24_conv_1)
mul_40 = features_24_conv_1.__mul__(sigmoid_35)
features_24_conv_3 = self.features_24_conv_3(mul_40)
features_24_conv_4 = self.features_24_conv_4(features_24_conv_3)
sigmoid_36 = torch.sigmoid(features_24_conv_4)
mul_41 = features_24_conv_4.__mul__(sigmoid_36)
size_6 = mul_41.size()
features_24_conv_6_avg_pool = self.features_24_conv_6_avg_pool(mul_41)
view_11 = features_24_conv_6_avg_pool.view(size_6[0], size_6[1])
features_24_conv_6_fc_0 = self.features_24_conv_6_fc_0(view_11)
sigmoid_37 = torch.sigmoid(features_24_conv_6_fc_0)
mul_42 = features_24_conv_6_fc_0.__mul__(sigmoid_37)
features_24_conv_6_fc_2 = self.features_24_conv_6_fc_2(mul_42)
features_24_conv_6_fc_3 = self.features_24_conv_6_fc_3(features_24_conv_6_fc_2)
view_12 = features_24_conv_6_fc_3.view(size_6[0], size_6[1], 1, 1)
mul_43 = mul_41.__mul__(view_12)
features_24_conv_7 = self.features_24_conv_7(mul_43)
features_24_conv_8 = self.features_24_conv_8(features_24_conv_7)
add_20 = add_19.__add__(features_24_conv_8)
features_25_conv_0 = self.features_25_conv_0(add_20)
features_25_conv_1 = self.features_25_conv_1(features_25_conv_0)
sigmoid_38 = torch.sigmoid(features_25_conv_1)
mul_44 = features_25_conv_1.__mul__(sigmoid_38)
features_25_conv_3 = self.features_25_conv_3(mul_44)
features_25_conv_4 = self.features_25_conv_4(features_25_conv_3)
sigmoid_39 = torch.sigmoid(features_25_conv_4)
mul_45 = features_25_conv_4.__mul__(sigmoid_39)
size_7 = mul_45.size()
features_25_conv_6_avg_pool = self.features_25_conv_6_avg_pool(mul_45)
view_13 = features_25_conv_6_avg_pool.view(size_7[0], size_7[1])
features_25_conv_6_fc_0 = self.features_25_conv_6_fc_0(view_13)
sigmoid_40 = torch.sigmoid(features_25_conv_6_fc_0)
mul_46 = features_25_conv_6_fc_0.__mul__(sigmoid_40)
features_25_conv_6_fc_2 = self.features_25_conv_6_fc_2(mul_46)
features_25_conv_6_fc_3 = self.features_25_conv_6_fc_3(features_25_conv_6_fc_2)
view_14 = features_25_conv_6_fc_3.view(size_7[0], size_7[1], 1, 1)
mul_47 = mul_45.__mul__(view_14)
features_25_conv_7 = self.features_25_conv_7(mul_47)
features_25_conv_8 = self.features_25_conv_8(features_25_conv_7)
add_21 = add_20.__add__(features_25_conv_8)
features_26_conv_0 = self.features_26_conv_0(add_21)
features_26_conv_1 = self.features_26_conv_1(features_26_conv_0)
sigmoid_41 = torch.sigmoid(features_26_conv_1)
mul_48 = features_26_conv_1.__mul__(sigmoid_41)
features_26_conv_3 = self.features_26_conv_3(mul_48)
features_26_conv_4 = self.features_26_conv_4(features_26_conv_3)
sigmoid_42 = torch.sigmoid(features_26_conv_4)
mul_49 = features_26_conv_4.__mul__(sigmoid_42)
size_8 = mul_49.size()
features_26_conv_6_avg_pool = self.features_26_conv_6_avg_pool(mul_49)
view_15 = features_26_conv_6_avg_pool.view(size_8[0], size_8[1])
features_26_conv_6_fc_0 = self.features_26_conv_6_fc_0(view_15)
sigmoid_43 = torch.sigmoid(features_26_conv_6_fc_0)
mul_50 = features_26_conv_6_fc_0.__mul__(sigmoid_43)
features_26_conv_6_fc_2 = self.features_26_conv_6_fc_2(mul_50)
features_26_conv_6_fc_3 = self.features_26_conv_6_fc_3(features_26_conv_6_fc_2)
view_16 = features_26_conv_6_fc_3.view(size_8[0], size_8[1], 1, 1)
mul_51 = mul_49.__mul__(view_16)
features_26_conv_7 = self.features_26_conv_7(mul_51)
features_26_conv_8 = self.features_26_conv_8(features_26_conv_7)
add_22 = add_21.__add__(features_26_conv_8)
features_27_conv_0 = self.features_27_conv_0(add_22)
features_27_conv_1 = self.features_27_conv_1(features_27_conv_0)
sigmoid_44 = torch.sigmoid(features_27_conv_1)
mul_52 = features_27_conv_1.__mul__(sigmoid_44)
features_27_conv_3 = self.features_27_conv_3(mul_52)
features_27_conv_4 = self.features_27_conv_4(features_27_conv_3)
sigmoid_45 = torch.sigmoid(features_27_conv_4)
mul_53 = features_27_conv_4.__mul__(sigmoid_45)
size_9 = mul_53.size()
features_27_conv_6_avg_pool = self.features_27_conv_6_avg_pool(mul_53)
view_17 = features_27_conv_6_avg_pool.view(size_9[0], size_9[1])
features_27_conv_6_fc_0 = self.features_27_conv_6_fc_0(view_17)
sigmoid_46 = torch.sigmoid(features_27_conv_6_fc_0)
mul_54 = features_27_conv_6_fc_0.__mul__(sigmoid_46)
features_27_conv_6_fc_2 = self.features_27_conv_6_fc_2(mul_54)
features_27_conv_6_fc_3 = self.features_27_conv_6_fc_3(features_27_conv_6_fc_2)
view_18 = features_27_conv_6_fc_3.view(size_9[0], size_9[1], 1, 1)
mul_55 = mul_53.__mul__(view_18)
features_27_conv_7 = self.features_27_conv_7(mul_55)
features_27_conv_8 = self.features_27_conv_8(features_27_conv_7)
add_23 = add_22.__add__(features_27_conv_8)
features_28_conv_0 = self.features_28_conv_0(add_23)
features_28_conv_1 = self.features_28_conv_1(features_28_conv_0)
sigmoid_47 = torch.sigmoid(features_28_conv_1)
mul_56 = features_28_conv_1.__mul__(sigmoid_47)
features_28_conv_3 = self.features_28_conv_3(mul_56)
features_28_conv_4 = self.features_28_conv_4(features_28_conv_3)
sigmoid_48 = torch.sigmoid(features_28_conv_4)
mul_57 = features_28_conv_4.__mul__(sigmoid_48)
size_10 = mul_57.size()
features_28_conv_6_avg_pool = self.features_28_conv_6_avg_pool(mul_57)
view_19 = features_28_conv_6_avg_pool.view(size_10[0], size_10[1])
features_28_conv_6_fc_0 = self.features_28_conv_6_fc_0(view_19)
sigmoid_49 = torch.sigmoid(features_28_conv_6_fc_0)
mul_58 = features_28_conv_6_fc_0.__mul__(sigmoid_49)
features_28_conv_6_fc_2 = self.features_28_conv_6_fc_2(mul_58)
features_28_conv_6_fc_3 = self.features_28_conv_6_fc_3(features_28_conv_6_fc_2)
view_20 = features_28_conv_6_fc_3.view(size_10[0], size_10[1], 1, 1)
mul_59 = mul_57.__mul__(view_20)
features_28_conv_7 = self.features_28_conv_7(mul_59)
features_28_conv_8 = self.features_28_conv_8(features_28_conv_7)
add_24 = add_23.__add__(features_28_conv_8)
features_29_conv_0 = self.features_29_conv_0(add_24)
features_29_conv_1 = self.features_29_conv_1(features_29_conv_0)
sigmoid_50 = torch.sigmoid(features_29_conv_1)
mul_60 = features_29_conv_1.__mul__(sigmoid_50)
features_29_conv_3 = self.features_29_conv_3(mul_60)
features_29_conv_4 = self.features_29_conv_4(features_29_conv_3)
sigmoid_51 = torch.sigmoid(features_29_conv_4)
mul_61 = features_29_conv_4.__mul__(sigmoid_51)
size_11 = mul_61.size()
features_29_conv_6_avg_pool = self.features_29_conv_6_avg_pool(mul_61)
view_21 = features_29_conv_6_avg_pool.view(size_11[0], size_11[1])
features_29_conv_6_fc_0 = self.features_29_conv_6_fc_0(view_21)
sigmoid_52 = torch.sigmoid(features_29_conv_6_fc_0)
mul_62 = features_29_conv_6_fc_0.__mul__(sigmoid_52)
features_29_conv_6_fc_2 = self.features_29_conv_6_fc_2(mul_62)
features_29_conv_6_fc_3 = self.features_29_conv_6_fc_3(features_29_conv_6_fc_2)
view_22 = features_29_conv_6_fc_3.view(size_11[0], size_11[1], 1, 1)
mul_63 = mul_61.__mul__(view_22)
features_29_conv_7 = self.features_29_conv_7(mul_63)
features_29_conv_8 = self.features_29_conv_8(features_29_conv_7)
features_30_conv_0 = self.features_30_conv_0(features_29_conv_8)
features_30_conv_1 = self.features_30_conv_1(features_30_conv_0)
sigmoid_53 = torch.sigmoid(features_30_conv_1)
mul_64 = features_30_conv_1.__mul__(sigmoid_53)
features_30_conv_3 = self.features_30_conv_3(mul_64)
features_30_conv_4 = self.features_30_conv_4(features_30_conv_3)
sigmoid_54 = torch.sigmoid(features_30_conv_4)
mul_65 = features_30_conv_4.__mul__(sigmoid_54)
size_12 = mul_65.size()
features_30_conv_6_avg_pool = self.features_30_conv_6_avg_pool(mul_65)
view_23 = features_30_conv_6_avg_pool.view(size_12[0], size_12[1])
features_30_conv_6_fc_0 = self.features_30_conv_6_fc_0(view_23)
sigmoid_55 = torch.sigmoid(features_30_conv_6_fc_0)
mul_66 = features_30_conv_6_fc_0.__mul__(sigmoid_55)
features_30_conv_6_fc_2 = self.features_30_conv_6_fc_2(mul_66)
features_30_conv_6_fc_3 = self.features_30_conv_6_fc_3(features_30_conv_6_fc_2)
view_24 = features_30_conv_6_fc_3.view(size_12[0], size_12[1], 1, 1)
mul_67 = mul_65.__mul__(view_24)
features_30_conv_7 = self.features_30_conv_7(mul_67)
features_30_conv_8 = self.features_30_conv_8(features_30_conv_7)
add_25 = features_29_conv_8.__add__(features_30_conv_8)
features_31_conv_0 = self.features_31_conv_0(add_25)
features_31_conv_1 = self.features_31_conv_1(features_31_conv_0)
sigmoid_56 = torch.sigmoid(features_31_conv_1)
mul_68 = features_31_conv_1.__mul__(sigmoid_56)
features_31_conv_3 = self.features_31_conv_3(mul_68)
features_31_conv_4 = self.features_31_conv_4(features_31_conv_3)
sigmoid_57 = torch.sigmoid(features_31_conv_4)
mul_69 = features_31_conv_4.__mul__(sigmoid_57)
size_13 = mul_69.size()
features_31_conv_6_avg_pool = self.features_31_conv_6_avg_pool(mul_69)
view_25 = features_31_conv_6_avg_pool.view(size_13[0], size_13[1])
features_31_conv_6_fc_0 = self.features_31_conv_6_fc_0(view_25)
sigmoid_58 = torch.sigmoid(features_31_conv_6_fc_0)
mul_70 = features_31_conv_6_fc_0.__mul__(sigmoid_58)
features_31_conv_6_fc_2 = self.features_31_conv_6_fc_2(mul_70)
features_31_conv_6_fc_3 = self.features_31_conv_6_fc_3(features_31_conv_6_fc_2)
view_26 = features_31_conv_6_fc_3.view(size_13[0], size_13[1], 1, 1)
mul_71 = mul_69.__mul__(view_26)
features_31_conv_7 = self.features_31_conv_7(mul_71)
features_31_conv_8 = self.features_31_conv_8(features_31_conv_7)
add_26 = add_25.__add__(features_31_conv_8)
features_32_conv_0 = self.features_32_conv_0(add_26)
features_32_conv_1 = self.features_32_conv_1(features_32_conv_0)
sigmoid_59 = torch.sigmoid(features_32_conv_1)
mul_72 = features_32_conv_1.__mul__(sigmoid_59)
features_32_conv_3 = self.features_32_conv_3(mul_72)
features_32_conv_4 = self.features_32_conv_4(features_32_conv_3)
sigmoid_60 = torch.sigmoid(features_32_conv_4)
mul_73 = features_32_conv_4.__mul__(sigmoid_60)
size_14 = mul_73.size()
features_32_conv_6_avg_pool = self.features_32_conv_6_avg_pool(mul_73)
view_27 = features_32_conv_6_avg_pool.view(size_14[0], size_14[1])
features_32_conv_6_fc_0 = self.features_32_conv_6_fc_0(view_27)
sigmoid_61 = torch.sigmoid(features_32_conv_6_fc_0)
mul_74 = features_32_conv_6_fc_0.__mul__(sigmoid_61)
features_32_conv_6_fc_2 = self.features_32_conv_6_fc_2(mul_74)
features_32_conv_6_fc_3 = self.features_32_conv_6_fc_3(features_32_conv_6_fc_2)
view_28 = features_32_conv_6_fc_3.view(size_14[0], size_14[1], 1, 1)
mul_75 = mul_73.__mul__(view_28)
features_32_conv_7 = self.features_32_conv_7(mul_75)
features_32_conv_8 = self.features_32_conv_8(features_32_conv_7)
add_27 = add_26.__add__(features_32_conv_8)
features_33_conv_0 = self.features_33_conv_0(add_27)
features_33_conv_1 = self.features_33_conv_1(features_33_conv_0)
sigmoid_62 = torch.sigmoid(features_33_conv_1)
mul_76 = features_33_conv_1.__mul__(sigmoid_62)
features_33_conv_3 = self.features_33_conv_3(mul_76)
features_33_conv_4 = self.features_33_conv_4(features_33_conv_3)
sigmoid_63 = torch.sigmoid(features_33_conv_4)
mul_77 = features_33_conv_4.__mul__(sigmoid_63)
size_15 = mul_77.size()
features_33_conv_6_avg_pool = self.features_33_conv_6_avg_pool(mul_77)
view_29 = features_33_conv_6_avg_pool.view(size_15[0], size_15[1])
features_33_conv_6_fc_0 = self.features_33_conv_6_fc_0(view_29)
sigmoid_64 = torch.sigmoid(features_33_conv_6_fc_0)
mul_78 = features_33_conv_6_fc_0.__mul__(sigmoid_64)
features_33_conv_6_fc_2 = self.features_33_conv_6_fc_2(mul_78)
features_33_conv_6_fc_3 = self.features_33_conv_6_fc_3(features_33_conv_6_fc_2)
view_30 = features_33_conv_6_fc_3.view(size_15[0], size_15[1], 1, 1)
mul_79 = mul_77.__mul__(view_30)
features_33_conv_7 = self.features_33_conv_7(mul_79)
features_33_conv_8 = self.features_33_conv_8(features_33_conv_7)
add_28 = add_27.__add__(features_33_conv_8)
features_34_conv_0 = self.features_34_conv_0(add_28)
features_34_conv_1 = self.features_34_conv_1(features_34_conv_0)
sigmoid_65 = torch.sigmoid(features_34_conv_1)
mul_80 = features_34_conv_1.__mul__(sigmoid_65)
features_34_conv_3 = self.features_34_conv_3(mul_80)
features_34_conv_4 = self.features_34_conv_4(features_34_conv_3)
sigmoid_66 = torch.sigmoid(features_34_conv_4)
mul_81 = features_34_conv_4.__mul__(sigmoid_66)
size_16 = mul_81.size()
features_34_conv_6_avg_pool = self.features_34_conv_6_avg_pool(mul_81)
view_31 = features_34_conv_6_avg_pool.view(size_16[0], size_16[1])
features_34_conv_6_fc_0 = self.features_34_conv_6_fc_0(view_31)
sigmoid_67 = torch.sigmoid(features_34_conv_6_fc_0)
mul_82 = features_34_conv_6_fc_0.__mul__(sigmoid_67)
features_34_conv_6_fc_2 = self.features_34_conv_6_fc_2(mul_82)
features_34_conv_6_fc_3 = self.features_34_conv_6_fc_3(features_34_conv_6_fc_2)
view_32 = features_34_conv_6_fc_3.view(size_16[0], size_16[1], 1, 1)
mul_83 = mul_81.__mul__(view_32)
features_34_conv_7 = self.features_34_conv_7(mul_83)
features_34_conv_8 = self.features_34_conv_8(features_34_conv_7)
add_29 = add_28.__add__(features_34_conv_8)
features_35_conv_0 = self.features_35_conv_0(add_29)
features_35_conv_1 = self.features_35_conv_1(features_35_conv_0)
sigmoid_68 = torch.sigmoid(features_35_conv_1)
mul_84 = features_35_conv_1.__mul__(sigmoid_68)
features_35_conv_3 = self.features_35_conv_3(mul_84)
features_35_conv_4 = self.features_35_conv_4(features_35_conv_3)
sigmoid_69 = torch.sigmoid(features_35_conv_4)
mul_85 = features_35_conv_4.__mul__(sigmoid_69)
size_17 = mul_85.size()
features_35_conv_6_avg_pool = self.features_35_conv_6_avg_pool(mul_85)
view_33 = features_35_conv_6_avg_pool.view(size_17[0], size_17[1])
features_35_conv_6_fc_0 = self.features_35_conv_6_fc_0(view_33)
sigmoid_70 = torch.sigmoid(features_35_conv_6_fc_0)
mul_86 = features_35_conv_6_fc_0.__mul__(sigmoid_70)
features_35_conv_6_fc_2 = self.features_35_conv_6_fc_2(mul_86)
features_35_conv_6_fc_3 = self.features_35_conv_6_fc_3(features_35_conv_6_fc_2)
view_34 = features_35_conv_6_fc_3.view(size_17[0], size_17[1], 1, 1)
mul_87 = mul_85.__mul__(view_34)
features_35_conv_7 = self.features_35_conv_7(mul_87)
features_35_conv_8 = self.features_35_conv_8(features_35_conv_7)
add_30 = add_29.__add__(features_35_conv_8)
features_36_conv_0 = self.features_36_conv_0(add_30)
features_36_conv_1 = self.features_36_conv_1(features_36_conv_0)
sigmoid_71 = torch.sigmoid(features_36_conv_1)
mul_88 = features_36_conv_1.__mul__(sigmoid_71)
features_36_conv_3 = self.features_36_conv_3(mul_88)
features_36_conv_4 = self.features_36_conv_4(features_36_conv_3)
sigmoid_72 = torch.sigmoid(features_36_conv_4)
mul_89 = features_36_conv_4.__mul__(sigmoid_72)
size_18 = mul_89.size()
features_36_conv_6_avg_pool = self.features_36_conv_6_avg_pool(mul_89)
view_35 = features_36_conv_6_avg_pool.view(size_18[0], size_18[1])
features_36_conv_6_fc_0 = self.features_36_conv_6_fc_0(view_35)
sigmoid_73 = torch.sigmoid(features_36_conv_6_fc_0)
mul_90 = features_36_conv_6_fc_0.__mul__(sigmoid_73)
features_36_conv_6_fc_2 = self.features_36_conv_6_fc_2(mul_90)
features_36_conv_6_fc_3 = self.features_36_conv_6_fc_3(features_36_conv_6_fc_2)
view_36 = features_36_conv_6_fc_3.view(size_18[0], size_18[1], 1, 1)
mul_91 = mul_89.__mul__(view_36)
features_36_conv_7 = self.features_36_conv_7(mul_91)
features_36_conv_8 = self.features_36_conv_8(features_36_conv_7)
add_31 = add_30.__add__(features_36_conv_8)
features_37_conv_0 = self.features_37_conv_0(add_31)
features_37_conv_1 = self.features_37_conv_1(features_37_conv_0)
sigmoid_74 = torch.sigmoid(features_37_conv_1)
mul_92 = features_37_conv_1.__mul__(sigmoid_74)
features_37_conv_3 = self.features_37_conv_3(mul_92)
features_37_conv_4 = self.features_37_conv_4(features_37_conv_3)
sigmoid_75 = torch.sigmoid(features_37_conv_4)
mul_93 = features_37_conv_4.__mul__(sigmoid_75)
size_19 = mul_93.size()
features_37_conv_6_avg_pool = self.features_37_conv_6_avg_pool(mul_93)
view_37 = features_37_conv_6_avg_pool.view(size_19[0], size_19[1])
features_37_conv_6_fc_0 = self.features_37_conv_6_fc_0(view_37)
sigmoid_76 = torch.sigmoid(features_37_conv_6_fc_0)
mul_94 = features_37_conv_6_fc_0.__mul__(sigmoid_76)
features_37_conv_6_fc_2 = self.features_37_conv_6_fc_2(mul_94)
features_37_conv_6_fc_3 = self.features_37_conv_6_fc_3(features_37_conv_6_fc_2)
view_38 = features_37_conv_6_fc_3.view(size_19[0], size_19[1], 1, 1)
mul_95 = mul_93.__mul__(view_38)
features_37_conv_7 = self.features_37_conv_7(mul_95)
features_37_conv_8 = self.features_37_conv_8(features_37_conv_7)
add_32 = add_31.__add__(features_37_conv_8)
features_38_conv_0 = self.features_38_conv_0(add_32)
features_38_conv_1 = self.features_38_conv_1(features_38_conv_0)
sigmoid_77 = torch.sigmoid(features_38_conv_1)
mul_96 = features_38_conv_1.__mul__(sigmoid_77)
features_38_conv_3 = self.features_38_conv_3(mul_96)
features_38_conv_4 = self.features_38_conv_4(features_38_conv_3)
sigmoid_78 = torch.sigmoid(features_38_conv_4)
mul_97 = features_38_conv_4.__mul__(sigmoid_78)
size_20 = mul_97.size()
features_38_conv_6_avg_pool = self.features_38_conv_6_avg_pool(mul_97)
view_39 = features_38_conv_6_avg_pool.view(size_20[0], size_20[1])
features_38_conv_6_fc_0 = self.features_38_conv_6_fc_0(view_39)
sigmoid_79 = torch.sigmoid(features_38_conv_6_fc_0)
mul_98 = features_38_conv_6_fc_0.__mul__(sigmoid_79)
features_38_conv_6_fc_2 = self.features_38_conv_6_fc_2(mul_98)
features_38_conv_6_fc_3 = self.features_38_conv_6_fc_3(features_38_conv_6_fc_2)
view_40 = features_38_conv_6_fc_3.view(size_20[0], size_20[1], 1, 1)
mul_99 = mul_97.__mul__(view_40)
features_38_conv_7 = self.features_38_conv_7(mul_99)
features_38_conv_8 = self.features_38_conv_8(features_38_conv_7)
add_33 = add_32.__add__(features_38_conv_8)
features_39_conv_0 = self.features_39_conv_0(add_33)
features_39_conv_1 = self.features_39_conv_1(features_39_conv_0)
sigmoid_80 = torch.sigmoid(features_39_conv_1)
mul_100 = features_39_conv_1.__mul__(sigmoid_80)
features_39_conv_3 = self.features_39_conv_3(mul_100)
features_39_conv_4 = self.features_39_conv_4(features_39_conv_3)
sigmoid_81 = torch.sigmoid(features_39_conv_4)
mul_101 = features_39_conv_4.__mul__(sigmoid_81)
size_21 = mul_101.size()
features_39_conv_6_avg_pool = self.features_39_conv_6_avg_pool(mul_101)
view_41 = features_39_conv_6_avg_pool.view(size_21[0], size_21[1])
features_39_conv_6_fc_0 = self.features_39_conv_6_fc_0(view_41)
sigmoid_82 = torch.sigmoid(features_39_conv_6_fc_0)
mul_102 = features_39_conv_6_fc_0.__mul__(sigmoid_82)
features_39_conv_6_fc_2 = self.features_39_conv_6_fc_2(mul_102)
features_39_conv_6_fc_3 = self.features_39_conv_6_fc_3(features_39_conv_6_fc_2)
view_42 = features_39_conv_6_fc_3.view(size_21[0], size_21[1], 1, 1)
mul_103 = mul_101.__mul__(view_42)
features_39_conv_7 = self.features_39_conv_7(mul_103)
features_39_conv_8 = self.features_39_conv_8(features_39_conv_7)
add_34 = add_33.__add__(features_39_conv_8)
features_40_conv_0 = self.features_40_conv_0(add_34)
features_40_conv_1 = self.features_40_conv_1(features_40_conv_0)
sigmoid_83 = torch.sigmoid(features_40_conv_1)
mul_104 = features_40_conv_1.__mul__(sigmoid_83)
features_40_conv_3 = self.features_40_conv_3(mul_104)
features_40_conv_4 = self.features_40_conv_4(features_40_conv_3)
sigmoid_84 = torch.sigmoid(features_40_conv_4)
mul_105 = features_40_conv_4.__mul__(sigmoid_84)
size_22 = mul_105.size()
features_40_conv_6_avg_pool = self.features_40_conv_6_avg_pool(mul_105)
view_43 = features_40_conv_6_avg_pool.view(size_22[0], size_22[1])
features_40_conv_6_fc_0 = self.features_40_conv_6_fc_0(view_43)
sigmoid_85 = torch.sigmoid(features_40_conv_6_fc_0)
mul_106 = features_40_conv_6_fc_0.__mul__(sigmoid_85)
features_40_conv_6_fc_2 = self.features_40_conv_6_fc_2(mul_106)
features_40_conv_6_fc_3 = self.features_40_conv_6_fc_3(features_40_conv_6_fc_2)
view_44 = features_40_conv_6_fc_3.view(size_22[0], size_22[1], 1, 1)
mul_107 = mul_105.__mul__(view_44)
features_40_conv_7 = self.features_40_conv_7(mul_107)
features_40_conv_8 = self.features_40_conv_8(features_40_conv_7)
add_35 = add_34.__add__(features_40_conv_8)
features_41_conv_0 = self.features_41_conv_0(add_35)
features_41_conv_1 = self.features_41_conv_1(features_41_conv_0)
sigmoid_86 = torch.sigmoid(features_41_conv_1)
mul_108 = features_41_conv_1.__mul__(sigmoid_86)
features_41_conv_3 = self.features_41_conv_3(mul_108)
features_41_conv_4 = self.features_41_conv_4(features_41_conv_3)
sigmoid_87 = torch.sigmoid(features_41_conv_4)
mul_109 = features_41_conv_4.__mul__(sigmoid_87)
size_23 = mul_109.size()
features_41_conv_6_avg_pool = self.features_41_conv_6_avg_pool(mul_109)
view_45 = features_41_conv_6_avg_pool.view(size_23[0], size_23[1])
features_41_conv_6_fc_0 = self.features_41_conv_6_fc_0(view_45)
sigmoid_88 = torch.sigmoid(features_41_conv_6_fc_0)
mul_110 = features_41_conv_6_fc_0.__mul__(sigmoid_88)
features_41_conv_6_fc_2 = self.features_41_conv_6_fc_2(mul_110)
features_41_conv_6_fc_3 = self.features_41_conv_6_fc_3(features_41_conv_6_fc_2)
view_46 = features_41_conv_6_fc_3.view(size_23[0], size_23[1], 1, 1)
mul_111 = mul_109.__mul__(view_46)
features_41_conv_7 = self.features_41_conv_7(mul_111)
features_41_conv_8 = self.features_41_conv_8(features_41_conv_7)
add_36 = add_35.__add__(features_41_conv_8)
features_42_conv_0 = self.features_42_conv_0(add_36)
features_42_conv_1 = self.features_42_conv_1(features_42_conv_0)
sigmoid_89 = torch.sigmoid(features_42_conv_1)
mul_112 = features_42_conv_1.__mul__(sigmoid_89)
features_42_conv_3 = self.features_42_conv_3(mul_112)
features_42_conv_4 = self.features_42_conv_4(features_42_conv_3)
sigmoid_90 = torch.sigmoid(features_42_conv_4)
mul_113 = features_42_conv_4.__mul__(sigmoid_90)
size_24 = mul_113.size()
features_42_conv_6_avg_pool = self.features_42_conv_6_avg_pool(mul_113)
view_47 = features_42_conv_6_avg_pool.view(size_24[0], size_24[1])
features_42_conv_6_fc_0 = self.features_42_conv_6_fc_0(view_47)
sigmoid_91 = torch.sigmoid(features_42_conv_6_fc_0)
mul_114 = features_42_conv_6_fc_0.__mul__(sigmoid_91)
features_42_conv_6_fc_2 = self.features_42_conv_6_fc_2(mul_114)
features_42_conv_6_fc_3 = self.features_42_conv_6_fc_3(features_42_conv_6_fc_2)
view_48 = features_42_conv_6_fc_3.view(size_24[0], size_24[1], 1, 1)
mul_115 = mul_113.__mul__(view_48)
features_42_conv_7 = self.features_42_conv_7(mul_115)
features_42_conv_8 = self.features_42_conv_8(features_42_conv_7)
add_37 = add_36.__add__(features_42_conv_8)
features_43_conv_0 = self.features_43_conv_0(add_37)
features_43_conv_1 = self.features_43_conv_1(features_43_conv_0)
sigmoid_92 = torch.sigmoid(features_43_conv_1)
mul_116 = features_43_conv_1.__mul__(sigmoid_92)
features_43_conv_3 = self.features_43_conv_3(mul_116)
features_43_conv_4 = self.features_43_conv_4(features_43_conv_3)
sigmoid_93 = torch.sigmoid(features_43_conv_4)
mul_117 = features_43_conv_4.__mul__(sigmoid_93)
size_25 = mul_117.size()
features_43_conv_6_avg_pool = self.features_43_conv_6_avg_pool(mul_117)
view_49 = features_43_conv_6_avg_pool.view(size_25[0], size_25[1])
features_43_conv_6_fc_0 = self.features_43_conv_6_fc_0(view_49)
sigmoid_94 = torch.sigmoid(features_43_conv_6_fc_0)
mul_118 = features_43_conv_6_fc_0.__mul__(sigmoid_94)
features_43_conv_6_fc_2 = self.features_43_conv_6_fc_2(mul_118)
features_43_conv_6_fc_3 = self.features_43_conv_6_fc_3(features_43_conv_6_fc_2)
view_50 = features_43_conv_6_fc_3.view(size_25[0], size_25[1], 1, 1)
mul_119 = mul_117.__mul__(view_50)
features_43_conv_7 = self.features_43_conv_7(mul_119)
features_43_conv_8 = self.features_43_conv_8(features_43_conv_7)
add_38 = add_37.__add__(features_43_conv_8)
features_44_conv_0 = self.features_44_conv_0(add_38)
features_44_conv_1 = self.features_44_conv_1(features_44_conv_0)
sigmoid_95 = torch.sigmoid(features_44_conv_1)
mul_120 = features_44_conv_1.__mul__(sigmoid_95)
features_44_conv_3 = self.features_44_conv_3(mul_120)
features_44_conv_4 = self.features_44_conv_4(features_44_conv_3)
sigmoid_96 = torch.sigmoid(features_44_conv_4)
mul_121 = features_44_conv_4.__mul__(sigmoid_96)
size_26 = mul_121.size()
features_44_conv_6_avg_pool = self.features_44_conv_6_avg_pool(mul_121)
view_51 = features_44_conv_6_avg_pool.view(size_26[0], size_26[1])
features_44_conv_6_fc_0 = self.features_44_conv_6_fc_0(view_51)
sigmoid_97 = torch.sigmoid(features_44_conv_6_fc_0)
mul_122 = features_44_conv_6_fc_0.__mul__(sigmoid_97)
features_44_conv_6_fc_2 = self.features_44_conv_6_fc_2(mul_122)
features_44_conv_6_fc_3 = self.features_44_conv_6_fc_3(features_44_conv_6_fc_2)
view_52 = features_44_conv_6_fc_3.view(size_26[0], size_26[1], 1, 1)
mul_123 = mul_121.__mul__(view_52)
features_44_conv_7 = self.features_44_conv_7(mul_123)
features_44_conv_8 = self.features_44_conv_8(features_44_conv_7)
add_39 = add_38.__add__(features_44_conv_8)
features_45_conv_0 = self.features_45_conv_0(add_39)
features_45_conv_1 = self.features_45_conv_1(features_45_conv_0)
sigmoid_98 = torch.sigmoid(features_45_conv_1)
mul_124 = features_45_conv_1.__mul__(sigmoid_98)
features_45_conv_3 = self.features_45_conv_3(mul_124)
features_45_conv_4 = self.features_45_conv_4(features_45_conv_3)
sigmoid_99 = torch.sigmoid(features_45_conv_4)
mul_125 = features_45_conv_4.__mul__(sigmoid_99)
size_27 = mul_125.size()
features_45_conv_6_avg_pool = self.features_45_conv_6_avg_pool(mul_125)
view_53 = features_45_conv_6_avg_pool.view(size_27[0], size_27[1])
features_45_conv_6_fc_0 = self.features_45_conv_6_fc_0(view_53)
sigmoid_100 = torch.sigmoid(features_45_conv_6_fc_0)
mul_126 = features_45_conv_6_fc_0.__mul__(sigmoid_100)
features_45_conv_6_fc_2 = self.features_45_conv_6_fc_2(mul_126)
features_45_conv_6_fc_3 = self.features_45_conv_6_fc_3(features_45_conv_6_fc_2)
view_54 = features_45_conv_6_fc_3.view(size_27[0], size_27[1], 1, 1)
mul_127 = mul_125.__mul__(view_54)
features_45_conv_7 = self.features_45_conv_7(mul_127)
features_45_conv_8 = self.features_45_conv_8(features_45_conv_7)
add_40 = add_39.__add__(features_45_conv_8)
features_46_conv_0 = self.features_46_conv_0(add_40)
features_46_conv_1 = self.features_46_conv_1(features_46_conv_0)
sigmoid_101 = torch.sigmoid(features_46_conv_1)
mul_128 = features_46_conv_1.__mul__(sigmoid_101)
features_46_conv_3 = self.features_46_conv_3(mul_128)
features_46_conv_4 = self.features_46_conv_4(features_46_conv_3)
sigmoid_102 = torch.sigmoid(features_46_conv_4)
mul_129 = features_46_conv_4.__mul__(sigmoid_102)
size_28 = mul_129.size()
features_46_conv_6_avg_pool = self.features_46_conv_6_avg_pool(mul_129)
view_55 = features_46_conv_6_avg_pool.view(size_28[0], size_28[1])
features_46_conv_6_fc_0 = self.features_46_conv_6_fc_0(view_55)
sigmoid_103 = torch.sigmoid(features_46_conv_6_fc_0)
mul_130 = features_46_conv_6_fc_0.__mul__(sigmoid_103)
features_46_conv_6_fc_2 = self.features_46_conv_6_fc_2(mul_130)
features_46_conv_6_fc_3 = self.features_46_conv_6_fc_3(features_46_conv_6_fc_2)
view_56 = features_46_conv_6_fc_3.view(size_28[0], size_28[1], 1, 1)
mul_131 = mul_129.__mul__(view_56)
features_46_conv_7 = self.features_46_conv_7(mul_131)
features_46_conv_8 = self.features_46_conv_8(features_46_conv_7)
add_41 = add_40.__add__(features_46_conv_8)
features_47_conv_0 = self.features_47_conv_0(add_41)
features_47_conv_1 = self.features_47_conv_1(features_47_conv_0)
sigmoid_104 = torch.sigmoid(features_47_conv_1)
mul_132 = features_47_conv_1.__mul__(sigmoid_104)
features_47_conv_3 = self.features_47_conv_3(mul_132)
features_47_conv_4 = self.features_47_conv_4(features_47_conv_3)
sigmoid_105 = torch.sigmoid(features_47_conv_4)
mul_133 = features_47_conv_4.__mul__(sigmoid_105)
size_29 = mul_133.size()
features_47_conv_6_avg_pool = self.features_47_conv_6_avg_pool(mul_133)
view_57 = features_47_conv_6_avg_pool.view(size_29[0], size_29[1])
features_47_conv_6_fc_0 = self.features_47_conv_6_fc_0(view_57)
sigmoid_106 = torch.sigmoid(features_47_conv_6_fc_0)
mul_134 = features_47_conv_6_fc_0.__mul__(sigmoid_106)
features_47_conv_6_fc_2 = self.features_47_conv_6_fc_2(mul_134)
features_47_conv_6_fc_3 = self.features_47_conv_6_fc_3(features_47_conv_6_fc_2)
view_58 = features_47_conv_6_fc_3.view(size_29[0], size_29[1], 1, 1)
mul_135 = mul_133.__mul__(view_58)
features_47_conv_7 = self.features_47_conv_7(mul_135)
features_47_conv_8 = self.features_47_conv_8(features_47_conv_7)
add_42 = add_41.__add__(features_47_conv_8)
features_48_conv_0 = self.features_48_conv_0(add_42)
features_48_conv_1 = self.features_48_conv_1(features_48_conv_0)
sigmoid_107 = torch.sigmoid(features_48_conv_1)
mul_136 = features_48_conv_1.__mul__(sigmoid_107)
features_48_conv_3 = self.features_48_conv_3(mul_136)
features_48_conv_4 = self.features_48_conv_4(features_48_conv_3)
sigmoid_108 = torch.sigmoid(features_48_conv_4)
mul_137 = features_48_conv_4.__mul__(sigmoid_108)
size_30 = mul_137.size()
features_48_conv_6_avg_pool = self.features_48_conv_6_avg_pool(mul_137)
view_59 = features_48_conv_6_avg_pool.view(size_30[0], size_30[1])
features_48_conv_6_fc_0 = self.features_48_conv_6_fc_0(view_59)
sigmoid_109 = torch.sigmoid(features_48_conv_6_fc_0)
mul_138 = features_48_conv_6_fc_0.__mul__(sigmoid_109)
features_48_conv_6_fc_2 = self.features_48_conv_6_fc_2(mul_138)
features_48_conv_6_fc_3 = self.features_48_conv_6_fc_3(features_48_conv_6_fc_2)
view_60 = features_48_conv_6_fc_3.view(size_30[0], size_30[1], 1, 1)
mul_139 = mul_137.__mul__(view_60)
features_48_conv_7 = self.features_48_conv_7(mul_139)
features_48_conv_8 = self.features_48_conv_8(features_48_conv_7)
features_49_conv_0 = self.features_49_conv_0(features_48_conv_8)
features_49_conv_1 = self.features_49_conv_1(features_49_conv_0)
sigmoid_110 = torch.sigmoid(features_49_conv_1)
mul_140 = features_49_conv_1.__mul__(sigmoid_110)
features_49_conv_3 = self.features_49_conv_3(mul_140)
features_49_conv_4 = self.features_49_conv_4(features_49_conv_3)
sigmoid_111 = torch.sigmoid(features_49_conv_4)
mul_141 = features_49_conv_4.__mul__(sigmoid_111)
size_31 = mul_141.size()
features_49_conv_6_avg_pool = self.features_49_conv_6_avg_pool(mul_141)
view_61 = features_49_conv_6_avg_pool.view(size_31[0], size_31[1])
features_49_conv_6_fc_0 = self.features_49_conv_6_fc_0(view_61)
sigmoid_112 = torch.sigmoid(features_49_conv_6_fc_0)
mul_142 = features_49_conv_6_fc_0.__mul__(sigmoid_112)
features_49_conv_6_fc_2 = self.features_49_conv_6_fc_2(mul_142)
features_49_conv_6_fc_3 = self.features_49_conv_6_fc_3(features_49_conv_6_fc_2)
view_62 = features_49_conv_6_fc_3.view(size_31[0], size_31[1], 1, 1)
mul_143 = mul_141.__mul__(view_62)
features_49_conv_7 = self.features_49_conv_7(mul_143)
features_49_conv_8 = self.features_49_conv_8(features_49_conv_7)
add_43 = features_48_conv_8.__add__(features_49_conv_8)
features_50_conv_0 = self.features_50_conv_0(add_43)
features_50_conv_1 = self.features_50_conv_1(features_50_conv_0)
sigmoid_113 = torch.sigmoid(features_50_conv_1)
mul_144 = features_50_conv_1.__mul__(sigmoid_113)
features_50_conv_3 = self.features_50_conv_3(mul_144)
features_50_conv_4 = self.features_50_conv_4(features_50_conv_3)
sigmoid_114 = torch.sigmoid(features_50_conv_4)
mul_145 = features_50_conv_4.__mul__(sigmoid_114)
size_32 = mul_145.size()
features_50_conv_6_avg_pool = self.features_50_conv_6_avg_pool(mul_145)
view_63 = features_50_conv_6_avg_pool.view(size_32[0], size_32[1])
features_50_conv_6_fc_0 = self.features_50_conv_6_fc_0(view_63)
sigmoid_115 = torch.sigmoid(features_50_conv_6_fc_0)
mul_146 = features_50_conv_6_fc_0.__mul__(sigmoid_115)
features_50_conv_6_fc_2 = self.features_50_conv_6_fc_2(mul_146)
features_50_conv_6_fc_3 = self.features_50_conv_6_fc_3(features_50_conv_6_fc_2)
view_64 = features_50_conv_6_fc_3.view(size_32[0], size_32[1], 1, 1)
mul_147 = mul_145.__mul__(view_64)
features_50_conv_7 = self.features_50_conv_7(mul_147)
features_50_conv_8 = self.features_50_conv_8(features_50_conv_7)
add_44 = add_43.__add__(features_50_conv_8)
features_51_conv_0 = self.features_51_conv_0(add_44)
features_51_conv_1 = self.features_51_conv_1(features_51_conv_0)
sigmoid_116 = torch.sigmoid(features_51_conv_1)
mul_148 = features_51_conv_1.__mul__(sigmoid_116)
features_51_conv_3 = self.features_51_conv_3(mul_148)
features_51_conv_4 = self.features_51_conv_4(features_51_conv_3)
sigmoid_117 = torch.sigmoid(features_51_conv_4)
mul_149 = features_51_conv_4.__mul__(sigmoid_117)
size_33 = mul_149.size()
features_51_conv_6_avg_pool = self.features_51_conv_6_avg_pool(mul_149)
view_65 = features_51_conv_6_avg_pool.view(size_33[0], size_33[1])
features_51_conv_6_fc_0 = self.features_51_conv_6_fc_0(view_65)
sigmoid_118 = torch.sigmoid(features_51_conv_6_fc_0)
mul_150 = features_51_conv_6_fc_0.__mul__(sigmoid_118)
features_51_conv_6_fc_2 = self.features_51_conv_6_fc_2(mul_150)
features_51_conv_6_fc_3 = self.features_51_conv_6_fc_3(features_51_conv_6_fc_2)
view_66 = features_51_conv_6_fc_3.view(size_33[0], size_33[1], 1, 1)
mul_151 = mul_149.__mul__(view_66)
features_51_conv_7 = self.features_51_conv_7(mul_151)
features_51_conv_8 = self.features_51_conv_8(features_51_conv_7)
add_45 = add_44.__add__(features_51_conv_8)
features_52_conv_0 = self.features_52_conv_0(add_45)
features_52_conv_1 = self.features_52_conv_1(features_52_conv_0)
sigmoid_119 = torch.sigmoid(features_52_conv_1)
mul_152 = features_52_conv_1.__mul__(sigmoid_119)
features_52_conv_3 = self.features_52_conv_3(mul_152)
features_52_conv_4 = self.features_52_conv_4(features_52_conv_3)
sigmoid_120 = torch.sigmoid(features_52_conv_4)
mul_153 = features_52_conv_4.__mul__(sigmoid_120)
size_34 = mul_153.size()
features_52_conv_6_avg_pool = self.features_52_conv_6_avg_pool(mul_153)
view_67 = features_52_conv_6_avg_pool.view(size_34[0], size_34[1])
features_52_conv_6_fc_0 = self.features_52_conv_6_fc_0(view_67)
sigmoid_121 = torch.sigmoid(features_52_conv_6_fc_0)
mul_154 = features_52_conv_6_fc_0.__mul__(sigmoid_121)
features_52_conv_6_fc_2 = self.features_52_conv_6_fc_2(mul_154)
features_52_conv_6_fc_3 = self.features_52_conv_6_fc_3(features_52_conv_6_fc_2)
view_68 = features_52_conv_6_fc_3.view(size_34[0], size_34[1], 1, 1)
mul_155 = mul_153.__mul__(view_68)
features_52_conv_7 = self.features_52_conv_7(mul_155)
features_52_conv_8 = self.features_52_conv_8(features_52_conv_7)
add_46 = add_45.__add__(features_52_conv_8)
features_53_conv_0 = self.features_53_conv_0(add_46)
features_53_conv_1 = self.features_53_conv_1(features_53_conv_0)
sigmoid_122 = torch.sigmoid(features_53_conv_1)
mul_156 = features_53_conv_1.__mul__(sigmoid_122)
features_53_conv_3 = self.features_53_conv_3(mul_156)
features_53_conv_4 = self.features_53_conv_4(features_53_conv_3)
sigmoid_123 = torch.sigmoid(features_53_conv_4)
mul_157 = features_53_conv_4.__mul__(sigmoid_123)
size_35 = mul_157.size()
features_53_conv_6_avg_pool = self.features_53_conv_6_avg_pool(mul_157)
view_69 = features_53_conv_6_avg_pool.view(size_35[0], size_35[1])
features_53_conv_6_fc_0 = self.features_53_conv_6_fc_0(view_69)
sigmoid_124 = torch.sigmoid(features_53_conv_6_fc_0)
mul_158 = features_53_conv_6_fc_0.__mul__(sigmoid_124)
features_53_conv_6_fc_2 = self.features_53_conv_6_fc_2(mul_158)
features_53_conv_6_fc_3 = self.features_53_conv_6_fc_3(features_53_conv_6_fc_2)
view_70 = features_53_conv_6_fc_3.view(size_35[0], size_35[1], 1, 1)
mul_159 = mul_157.__mul__(view_70)
features_53_conv_7 = self.features_53_conv_7(mul_159)
features_53_conv_8 = self.features_53_conv_8(features_53_conv_7)
add_47 = add_46.__add__(features_53_conv_8)
features_54_conv_0 = self.features_54_conv_0(add_47)
features_54_conv_1 = self.features_54_conv_1(features_54_conv_0)
sigmoid_125 = torch.sigmoid(features_54_conv_1)
mul_160 = features_54_conv_1.__mul__(sigmoid_125)
features_54_conv_3 = self.features_54_conv_3(mul_160)
features_54_conv_4 = self.features_54_conv_4(features_54_conv_3)
sigmoid_126 = torch.sigmoid(features_54_conv_4)
mul_161 = features_54_conv_4.__mul__(sigmoid_126)
size_36 = mul_161.size()
features_54_conv_6_avg_pool = self.features_54_conv_6_avg_pool(mul_161)
view_71 = features_54_conv_6_avg_pool.view(size_36[0], size_36[1])
features_54_conv_6_fc_0 = self.features_54_conv_6_fc_0(view_71)
sigmoid_127 = torch.sigmoid(features_54_conv_6_fc_0)
mul_162 = features_54_conv_6_fc_0.__mul__(sigmoid_127)
features_54_conv_6_fc_2 = self.features_54_conv_6_fc_2(mul_162)
features_54_conv_6_fc_3 = self.features_54_conv_6_fc_3(features_54_conv_6_fc_2)
view_72 = features_54_conv_6_fc_3.view(size_36[0], size_36[1], 1, 1)
mul_163 = mul_161.__mul__(view_72)
features_54_conv_7 = self.features_54_conv_7(mul_163)
features_54_conv_8 = self.features_54_conv_8(features_54_conv_7)
add_48 = add_47.__add__(features_54_conv_8)
features_55_conv_0 = self.features_55_conv_0(add_48)
features_55_conv_1 = self.features_55_conv_1(features_55_conv_0)
sigmoid_128 = torch.sigmoid(features_55_conv_1)
mul_164 = features_55_conv_1.__mul__(sigmoid_128)
features_55_conv_3 = self.features_55_conv_3(mul_164)
features_55_conv_4 = self.features_55_conv_4(features_55_conv_3)
sigmoid_129 = torch.sigmoid(features_55_conv_4)
mul_165 = features_55_conv_4.__mul__(sigmoid_129)
size_37 = mul_165.size()
features_55_conv_6_avg_pool = self.features_55_conv_6_avg_pool(mul_165)
view_73 = features_55_conv_6_avg_pool.view(size_37[0], size_37[1])
features_55_conv_6_fc_0 = self.features_55_conv_6_fc_0(view_73)
sigmoid_130 = torch.sigmoid(features_55_conv_6_fc_0)
mul_166 = features_55_conv_6_fc_0.__mul__(sigmoid_130)
features_55_conv_6_fc_2 = self.features_55_conv_6_fc_2(mul_166)
features_55_conv_6_fc_3 = self.features_55_conv_6_fc_3(features_55_conv_6_fc_2)
view_74 = features_55_conv_6_fc_3.view(size_37[0], size_37[1], 1, 1)
mul_167 = mul_165.__mul__(view_74)
features_55_conv_7 = self.features_55_conv_7(mul_167)
features_55_conv_8 = self.features_55_conv_8(features_55_conv_7)
add_49 = add_48.__add__(features_55_conv_8)
features_56_conv_0 = self.features_56_conv_0(add_49)
features_56_conv_1 = self.features_56_conv_1(features_56_conv_0)
sigmoid_131 = torch.sigmoid(features_56_conv_1)
mul_168 = features_56_conv_1.__mul__(sigmoid_131)
features_56_conv_3 = self.features_56_conv_3(mul_168)
features_56_conv_4 = self.features_56_conv_4(features_56_conv_3)
sigmoid_132 = torch.sigmoid(features_56_conv_4)
mul_169 = features_56_conv_4.__mul__(sigmoid_132)
size_38 = mul_169.size()
features_56_conv_6_avg_pool = self.features_56_conv_6_avg_pool(mul_169)
view_75 = features_56_conv_6_avg_pool.view(size_38[0], size_38[1])
features_56_conv_6_fc_0 = self.features_56_conv_6_fc_0(view_75)
sigmoid_133 = torch.sigmoid(features_56_conv_6_fc_0)
mul_170 = features_56_conv_6_fc_0.__mul__(sigmoid_133)
features_56_conv_6_fc_2 = self.features_56_conv_6_fc_2(mul_170)
features_56_conv_6_fc_3 = self.features_56_conv_6_fc_3(features_56_conv_6_fc_2)
view_76 = features_56_conv_6_fc_3.view(size_38[0], size_38[1], 1, 1)
mul_171 = mul_169.__mul__(view_76)
features_56_conv_7 = self.features_56_conv_7(mul_171)
features_56_conv_8 = self.features_56_conv_8(features_56_conv_7)
add_50 = add_49.__add__(features_56_conv_8)
features_57_conv_0 = self.features_57_conv_0(add_50)
features_57_conv_1 = self.features_57_conv_1(features_57_conv_0)
sigmoid_134 = torch.sigmoid(features_57_conv_1)
mul_172 = features_57_conv_1.__mul__(sigmoid_134)
features_57_conv_3 = self.features_57_conv_3(mul_172)
features_57_conv_4 = self.features_57_conv_4(features_57_conv_3)
sigmoid_135 = torch.sigmoid(features_57_conv_4)
mul_173 = features_57_conv_4.__mul__(sigmoid_135)
size_39 = mul_173.size()
features_57_conv_6_avg_pool = self.features_57_conv_6_avg_pool(mul_173)
view_77 = features_57_conv_6_avg_pool.view(size_39[0], size_39[1])
features_57_conv_6_fc_0 = self.features_57_conv_6_fc_0(view_77)
sigmoid_136 = torch.sigmoid(features_57_conv_6_fc_0)
mul_174 = features_57_conv_6_fc_0.__mul__(sigmoid_136)
features_57_conv_6_fc_2 = self.features_57_conv_6_fc_2(mul_174)
features_57_conv_6_fc_3 = self.features_57_conv_6_fc_3(features_57_conv_6_fc_2)
view_78 = features_57_conv_6_fc_3.view(size_39[0], size_39[1], 1, 1)
mul_175 = mul_173.__mul__(view_78)
features_57_conv_7 = self.features_57_conv_7(mul_175)
features_57_conv_8 = self.features_57_conv_8(features_57_conv_7)
add_51 = add_50.__add__(features_57_conv_8)
features_58_conv_0 = self.features_58_conv_0(add_51)
features_58_conv_1 = self.features_58_conv_1(features_58_conv_0)
sigmoid_137 = torch.sigmoid(features_58_conv_1)
mul_176 = features_58_conv_1.__mul__(sigmoid_137)
features_58_conv_3 = self.features_58_conv_3(mul_176)
features_58_conv_4 = self.features_58_conv_4(features_58_conv_3)
sigmoid_138 = torch.sigmoid(features_58_conv_4)
mul_177 = features_58_conv_4.__mul__(sigmoid_138)
size_40 = mul_177.size()
features_58_conv_6_avg_pool = self.features_58_conv_6_avg_pool(mul_177)
view_79 = features_58_conv_6_avg_pool.view(size_40[0], size_40[1])
features_58_conv_6_fc_0 = self.features_58_conv_6_fc_0(view_79)
sigmoid_139 = torch.sigmoid(features_58_conv_6_fc_0)
mul_178 = features_58_conv_6_fc_0.__mul__(sigmoid_139)
features_58_conv_6_fc_2 = self.features_58_conv_6_fc_2(mul_178)
features_58_conv_6_fc_3 = self.features_58_conv_6_fc_3(features_58_conv_6_fc_2)
view_80 = features_58_conv_6_fc_3.view(size_40[0], size_40[1], 1, 1)
mul_179 = mul_177.__mul__(view_80)
features_58_conv_7 = self.features_58_conv_7(mul_179)
features_58_conv_8 = self.features_58_conv_8(features_58_conv_7)
add_52 = add_51.__add__(features_58_conv_8)
features_59_conv_0 = self.features_59_conv_0(add_52)
features_59_conv_1 = self.features_59_conv_1(features_59_conv_0)
sigmoid_140 = torch.sigmoid(features_59_conv_1)
mul_180 = features_59_conv_1.__mul__(sigmoid_140)
features_59_conv_3 = self.features_59_conv_3(mul_180)
features_59_conv_4 = self.features_59_conv_4(features_59_conv_3)
sigmoid_141 = torch.sigmoid(features_59_conv_4)
mul_181 = features_59_conv_4.__mul__(sigmoid_141)
size_41 = mul_181.size()
features_59_conv_6_avg_pool = self.features_59_conv_6_avg_pool(mul_181)
view_81 = features_59_conv_6_avg_pool.view(size_41[0], size_41[1])
features_59_conv_6_fc_0 = self.features_59_conv_6_fc_0(view_81)
sigmoid_142 = torch.sigmoid(features_59_conv_6_fc_0)
mul_182 = features_59_conv_6_fc_0.__mul__(sigmoid_142)
features_59_conv_6_fc_2 = self.features_59_conv_6_fc_2(mul_182)
features_59_conv_6_fc_3 = self.features_59_conv_6_fc_3(features_59_conv_6_fc_2)
view_82 = features_59_conv_6_fc_3.view(size_41[0], size_41[1], 1, 1)
mul_183 = mul_181.__mul__(view_82)
features_59_conv_7 = self.features_59_conv_7(mul_183)
features_59_conv_8 = self.features_59_conv_8(features_59_conv_7)
add_53 = add_52.__add__(features_59_conv_8)
features_60_conv_0 = self.features_60_conv_0(add_53)
features_60_conv_1 = self.features_60_conv_1(features_60_conv_0)
sigmoid_143 = torch.sigmoid(features_60_conv_1)
mul_184 = features_60_conv_1.__mul__(sigmoid_143)
features_60_conv_3 = self.features_60_conv_3(mul_184)
features_60_conv_4 = self.features_60_conv_4(features_60_conv_3)
sigmoid_144 = torch.sigmoid(features_60_conv_4)
mul_185 = features_60_conv_4.__mul__(sigmoid_144)
size_42 = mul_185.size()
features_60_conv_6_avg_pool = self.features_60_conv_6_avg_pool(mul_185)
view_83 = features_60_conv_6_avg_pool.view(size_42[0], size_42[1])
features_60_conv_6_fc_0 = self.features_60_conv_6_fc_0(view_83)
sigmoid_145 = torch.sigmoid(features_60_conv_6_fc_0)
mul_186 = features_60_conv_6_fc_0.__mul__(sigmoid_145)
features_60_conv_6_fc_2 = self.features_60_conv_6_fc_2(mul_186)
features_60_conv_6_fc_3 = self.features_60_conv_6_fc_3(features_60_conv_6_fc_2)
view_84 = features_60_conv_6_fc_3.view(size_42[0], size_42[1], 1, 1)
mul_187 = mul_185.__mul__(view_84)
features_60_conv_7 = self.features_60_conv_7(mul_187)
features_60_conv_8 = self.features_60_conv_8(features_60_conv_7)
add_54 = add_53.__add__(features_60_conv_8)
features_61_conv_0 = self.features_61_conv_0(add_54)
features_61_conv_1 = self.features_61_conv_1(features_61_conv_0)
sigmoid_146 = torch.sigmoid(features_61_conv_1)
mul_188 = features_61_conv_1.__mul__(sigmoid_146)
features_61_conv_3 = self.features_61_conv_3(mul_188)
features_61_conv_4 = self.features_61_conv_4(features_61_conv_3)
sigmoid_147 = torch.sigmoid(features_61_conv_4)
mul_189 = features_61_conv_4.__mul__(sigmoid_147)
size_43 = mul_189.size()
features_61_conv_6_avg_pool = self.features_61_conv_6_avg_pool(mul_189)
view_85 = features_61_conv_6_avg_pool.view(size_43[0], size_43[1])
features_61_conv_6_fc_0 = self.features_61_conv_6_fc_0(view_85)
sigmoid_148 = torch.sigmoid(features_61_conv_6_fc_0)
mul_190 = features_61_conv_6_fc_0.__mul__(sigmoid_148)
features_61_conv_6_fc_2 = self.features_61_conv_6_fc_2(mul_190)
features_61_conv_6_fc_3 = self.features_61_conv_6_fc_3(features_61_conv_6_fc_2)
view_86 = features_61_conv_6_fc_3.view(size_43[0], size_43[1], 1, 1)
mul_191 = mul_189.__mul__(view_86)
features_61_conv_7 = self.features_61_conv_7(mul_191)
features_61_conv_8 = self.features_61_conv_8(features_61_conv_7)
add_55 = add_54.__add__(features_61_conv_8)
features_62_conv_0 = self.features_62_conv_0(add_55)
features_62_conv_1 = self.features_62_conv_1(features_62_conv_0)
sigmoid_149 = torch.sigmoid(features_62_conv_1)
mul_192 = features_62_conv_1.__mul__(sigmoid_149)
features_62_conv_3 = self.features_62_conv_3(mul_192)
features_62_conv_4 = self.features_62_conv_4(features_62_conv_3)
sigmoid_150 = torch.sigmoid(features_62_conv_4)
mul_193 = features_62_conv_4.__mul__(sigmoid_150)
size_44 = mul_193.size()
features_62_conv_6_avg_pool = self.features_62_conv_6_avg_pool(mul_193)
view_87 = features_62_conv_6_avg_pool.view(size_44[0], size_44[1])
features_62_conv_6_fc_0 = self.features_62_conv_6_fc_0(view_87)
sigmoid_151 = torch.sigmoid(features_62_conv_6_fc_0)
mul_194 = features_62_conv_6_fc_0.__mul__(sigmoid_151)
features_62_conv_6_fc_2 = self.features_62_conv_6_fc_2(mul_194)
features_62_conv_6_fc_3 = self.features_62_conv_6_fc_3(features_62_conv_6_fc_2)
view_88 = features_62_conv_6_fc_3.view(size_44[0], size_44[1], 1, 1)
mul_195 = mul_193.__mul__(view_88)
features_62_conv_7 = self.features_62_conv_7(mul_195)
features_62_conv_8 = self.features_62_conv_8(features_62_conv_7)
add_56 = add_55.__add__(features_62_conv_8)
features_63_conv_0 = self.features_63_conv_0(add_56)
features_63_conv_1 = self.features_63_conv_1(features_63_conv_0)
sigmoid_152 = torch.sigmoid(features_63_conv_1)
mul_196 = features_63_conv_1.__mul__(sigmoid_152)
features_63_conv_3 = self.features_63_conv_3(mul_196)
features_63_conv_4 = self.features_63_conv_4(features_63_conv_3)
sigmoid_153 = torch.sigmoid(features_63_conv_4)
mul_197 = features_63_conv_4.__mul__(sigmoid_153)
size_45 = mul_197.size()
features_63_conv_6_avg_pool = self.features_63_conv_6_avg_pool(mul_197)
view_89 = features_63_conv_6_avg_pool.view(size_45[0], size_45[1])
features_63_conv_6_fc_0 = self.features_63_conv_6_fc_0(view_89)
sigmoid_154 = torch.sigmoid(features_63_conv_6_fc_0)
mul_198 = features_63_conv_6_fc_0.__mul__(sigmoid_154)
features_63_conv_6_fc_2 = self.features_63_conv_6_fc_2(mul_198)
features_63_conv_6_fc_3 = self.features_63_conv_6_fc_3(features_63_conv_6_fc_2)
view_90 = features_63_conv_6_fc_3.view(size_45[0], size_45[1], 1, 1)
mul_199 = mul_197.__mul__(view_90)
features_63_conv_7 = self.features_63_conv_7(mul_199)
features_63_conv_8 = self.features_63_conv_8(features_63_conv_7)
add_57 = add_56.__add__(features_63_conv_8)
features_64_conv_0 = self.features_64_conv_0(add_57)
features_64_conv_1 = self.features_64_conv_1(features_64_conv_0)
sigmoid_155 = torch.sigmoid(features_64_conv_1)
mul_200 = features_64_conv_1.__mul__(sigmoid_155)
features_64_conv_3 = self.features_64_conv_3(mul_200)
features_64_conv_4 = self.features_64_conv_4(features_64_conv_3)
sigmoid_156 = torch.sigmoid(features_64_conv_4)
mul_201 = features_64_conv_4.__mul__(sigmoid_156)
size_46 = mul_201.size()
features_64_conv_6_avg_pool = self.features_64_conv_6_avg_pool(mul_201)
view_91 = features_64_conv_6_avg_pool.view(size_46[0], size_46[1])
features_64_conv_6_fc_0 = self.features_64_conv_6_fc_0(view_91)
sigmoid_157 = torch.sigmoid(features_64_conv_6_fc_0)
mul_202 = features_64_conv_6_fc_0.__mul__(sigmoid_157)
features_64_conv_6_fc_2 = self.features_64_conv_6_fc_2(mul_202)
features_64_conv_6_fc_3 = self.features_64_conv_6_fc_3(features_64_conv_6_fc_2)
view_92 = features_64_conv_6_fc_3.view(size_46[0], size_46[1], 1, 1)
mul_203 = mul_201.__mul__(view_92)
features_64_conv_7 = self.features_64_conv_7(mul_203)
features_64_conv_8 = self.features_64_conv_8(features_64_conv_7)
add_58 = add_57.__add__(features_64_conv_8)
features_65_conv_0 = self.features_65_conv_0(add_58)
features_65_conv_1 = self.features_65_conv_1(features_65_conv_0)
sigmoid_158 = torch.sigmoid(features_65_conv_1)
mul_204 = features_65_conv_1.__mul__(sigmoid_158)
features_65_conv_3 = self.features_65_conv_3(mul_204)
features_65_conv_4 = self.features_65_conv_4(features_65_conv_3)
sigmoid_159 = torch.sigmoid(features_65_conv_4)
mul_205 = features_65_conv_4.__mul__(sigmoid_159)
size_47 = mul_205.size()
features_65_conv_6_avg_pool = self.features_65_conv_6_avg_pool(mul_205)
view_93 = features_65_conv_6_avg_pool.view(size_47[0], size_47[1])
features_65_conv_6_fc_0 = self.features_65_conv_6_fc_0(view_93)
sigmoid_160 = torch.sigmoid(features_65_conv_6_fc_0)
mul_206 = features_65_conv_6_fc_0.__mul__(sigmoid_160)
features_65_conv_6_fc_2 = self.features_65_conv_6_fc_2(mul_206)
features_65_conv_6_fc_3 = self.features_65_conv_6_fc_3(features_65_conv_6_fc_2)
view_94 = features_65_conv_6_fc_3.view(size_47[0], size_47[1], 1, 1)
mul_207 = mul_205.__mul__(view_94)
features_65_conv_7 = self.features_65_conv_7(mul_207)
features_65_conv_8 = self.features_65_conv_8(features_65_conv_7)
add_59 = add_58.__add__(features_65_conv_8)
features_66_conv_0 = self.features_66_conv_0(add_59)
features_66_conv_1 = self.features_66_conv_1(features_66_conv_0)
sigmoid_161 = torch.sigmoid(features_66_conv_1)
mul_208 = features_66_conv_1.__mul__(sigmoid_161)
features_66_conv_3 = self.features_66_conv_3(mul_208)
features_66_conv_4 = self.features_66_conv_4(features_66_conv_3)
sigmoid_162 = torch.sigmoid(features_66_conv_4)
mul_209 = features_66_conv_4.__mul__(sigmoid_162)
size_48 = mul_209.size()
features_66_conv_6_avg_pool = self.features_66_conv_6_avg_pool(mul_209)
view_95 = features_66_conv_6_avg_pool.view(size_48[0], size_48[1])
features_66_conv_6_fc_0 = self.features_66_conv_6_fc_0(view_95)
sigmoid_163 = torch.sigmoid(features_66_conv_6_fc_0)
mul_210 = features_66_conv_6_fc_0.__mul__(sigmoid_163)
features_66_conv_6_fc_2 = self.features_66_conv_6_fc_2(mul_210)
features_66_conv_6_fc_3 = self.features_66_conv_6_fc_3(features_66_conv_6_fc_2)
view_96 = features_66_conv_6_fc_3.view(size_48[0], size_48[1], 1, 1)
mul_211 = mul_209.__mul__(view_96)
features_66_conv_7 = self.features_66_conv_7(mul_211)
features_66_conv_8 = self.features_66_conv_8(features_66_conv_7)
add_60 = add_59.__add__(features_66_conv_8)
features_67_conv_0 = self.features_67_conv_0(add_60)
features_67_conv_1 = self.features_67_conv_1(features_67_conv_0)
sigmoid_164 = torch.sigmoid(features_67_conv_1)
mul_212 = features_67_conv_1.__mul__(sigmoid_164)
features_67_conv_3 = self.features_67_conv_3(mul_212)
features_67_conv_4 = self.features_67_conv_4(features_67_conv_3)
sigmoid_165 = torch.sigmoid(features_67_conv_4)
mul_213 = features_67_conv_4.__mul__(sigmoid_165)
size_49 = mul_213.size()
features_67_conv_6_avg_pool = self.features_67_conv_6_avg_pool(mul_213)
view_97 = features_67_conv_6_avg_pool.view(size_49[0], size_49[1])
features_67_conv_6_fc_0 = self.features_67_conv_6_fc_0(view_97)
sigmoid_166 = torch.sigmoid(features_67_conv_6_fc_0)
mul_214 = features_67_conv_6_fc_0.__mul__(sigmoid_166)
features_67_conv_6_fc_2 = self.features_67_conv_6_fc_2(mul_214)
features_67_conv_6_fc_3 = self.features_67_conv_6_fc_3(features_67_conv_6_fc_2)
view_98 = features_67_conv_6_fc_3.view(size_49[0], size_49[1], 1, 1)
mul_215 = mul_213.__mul__(view_98)
features_67_conv_7 = self.features_67_conv_7(mul_215)
features_67_conv_8 = self.features_67_conv_8(features_67_conv_7)
add_61 = add_60.__add__(features_67_conv_8)
features_68_conv_0 = self.features_68_conv_0(add_61)
features_68_conv_1 = self.features_68_conv_1(features_68_conv_0)
sigmoid_167 = torch.sigmoid(features_68_conv_1)
mul_216 = features_68_conv_1.__mul__(sigmoid_167)
features_68_conv_3 = self.features_68_conv_3(mul_216)
features_68_conv_4 = self.features_68_conv_4(features_68_conv_3)
sigmoid_168 = torch.sigmoid(features_68_conv_4)
mul_217 = features_68_conv_4.__mul__(sigmoid_168)
size_50 = mul_217.size()
features_68_conv_6_avg_pool = self.features_68_conv_6_avg_pool(mul_217)
view_99 = features_68_conv_6_avg_pool.view(size_50[0], size_50[1])
features_68_conv_6_fc_0 = self.features_68_conv_6_fc_0(view_99)
sigmoid_169 = torch.sigmoid(features_68_conv_6_fc_0)
mul_218 = features_68_conv_6_fc_0.__mul__(sigmoid_169)
features_68_conv_6_fc_2 = self.features_68_conv_6_fc_2(mul_218)
features_68_conv_6_fc_3 = self.features_68_conv_6_fc_3(features_68_conv_6_fc_2)
view_100 = features_68_conv_6_fc_3.view(size_50[0], size_50[1], 1, 1)
mul_219 = mul_217.__mul__(view_100)
features_68_conv_7 = self.features_68_conv_7(mul_219)
features_68_conv_8 = self.features_68_conv_8(features_68_conv_7)
add_62 = add_61.__add__(features_68_conv_8)
features_69_conv_0 = self.features_69_conv_0(add_62)
features_69_conv_1 = self.features_69_conv_1(features_69_conv_0)
sigmoid_170 = torch.sigmoid(features_69_conv_1)
mul_220 = features_69_conv_1.__mul__(sigmoid_170)
features_69_conv_3 = self.features_69_conv_3(mul_220)
features_69_conv_4 = self.features_69_conv_4(features_69_conv_3)
sigmoid_171 = torch.sigmoid(features_69_conv_4)
mul_221 = features_69_conv_4.__mul__(sigmoid_171)
size_51 = mul_221.size()
features_69_conv_6_avg_pool = self.features_69_conv_6_avg_pool(mul_221)
view_101 = features_69_conv_6_avg_pool.view(size_51[0], size_51[1])
features_69_conv_6_fc_0 = self.features_69_conv_6_fc_0(view_101)
sigmoid_172 = torch.sigmoid(features_69_conv_6_fc_0)
mul_222 = features_69_conv_6_fc_0.__mul__(sigmoid_172)
features_69_conv_6_fc_2 = self.features_69_conv_6_fc_2(mul_222)
features_69_conv_6_fc_3 = self.features_69_conv_6_fc_3(features_69_conv_6_fc_2)
view_102 = features_69_conv_6_fc_3.view(size_51[0], size_51[1], 1, 1)
mul_223 = mul_221.__mul__(view_102)
features_69_conv_7 = self.features_69_conv_7(mul_223)
features_69_conv_8 = self.features_69_conv_8(features_69_conv_7)
add_63 = add_62.__add__(features_69_conv_8)
features_70_conv_0 = self.features_70_conv_0(add_63)
features_70_conv_1 = self.features_70_conv_1(features_70_conv_0)
sigmoid_173 = torch.sigmoid(features_70_conv_1)
mul_224 = features_70_conv_1.__mul__(sigmoid_173)
features_70_conv_3 = self.features_70_conv_3(mul_224)
features_70_conv_4 = self.features_70_conv_4(features_70_conv_3)
sigmoid_174 = torch.sigmoid(features_70_conv_4)
mul_225 = features_70_conv_4.__mul__(sigmoid_174)
size_52 = mul_225.size()
features_70_conv_6_avg_pool = self.features_70_conv_6_avg_pool(mul_225)
view_103 = features_70_conv_6_avg_pool.view(size_52[0], size_52[1])
features_70_conv_6_fc_0 = self.features_70_conv_6_fc_0(view_103)
sigmoid_175 = torch.sigmoid(features_70_conv_6_fc_0)
mul_226 = features_70_conv_6_fc_0.__mul__(sigmoid_175)
features_70_conv_6_fc_2 = self.features_70_conv_6_fc_2(mul_226)
features_70_conv_6_fc_3 = self.features_70_conv_6_fc_3(features_70_conv_6_fc_2)
view_104 = features_70_conv_6_fc_3.view(size_52[0], size_52[1], 1, 1)
mul_227 = mul_225.__mul__(view_104)
features_70_conv_7 = self.features_70_conv_7(mul_227)
features_70_conv_8 = self.features_70_conv_8(features_70_conv_7)
add_64 = add_63.__add__(features_70_conv_8)
features_71_conv_0 = self.features_71_conv_0(add_64)
features_71_conv_1 = self.features_71_conv_1(features_71_conv_0)
sigmoid_176 = torch.sigmoid(features_71_conv_1)
mul_228 = features_71_conv_1.__mul__(sigmoid_176)
features_71_conv_3 = self.features_71_conv_3(mul_228)
features_71_conv_4 = self.features_71_conv_4(features_71_conv_3)
sigmoid_177 = torch.sigmoid(features_71_conv_4)
mul_229 = features_71_conv_4.__mul__(sigmoid_177)
size_53 = mul_229.size()
features_71_conv_6_avg_pool = self.features_71_conv_6_avg_pool(mul_229)
view_105 = features_71_conv_6_avg_pool.view(size_53[0], size_53[1])
features_71_conv_6_fc_0 = self.features_71_conv_6_fc_0(view_105)
sigmoid_178 = torch.sigmoid(features_71_conv_6_fc_0)
mul_230 = features_71_conv_6_fc_0.__mul__(sigmoid_178)
features_71_conv_6_fc_2 = self.features_71_conv_6_fc_2(mul_230)
features_71_conv_6_fc_3 = self.features_71_conv_6_fc_3(features_71_conv_6_fc_2)
view_106 = features_71_conv_6_fc_3.view(size_53[0], size_53[1], 1, 1)
mul_231 = mul_229.__mul__(view_106)
features_71_conv_7 = self.features_71_conv_7(mul_231)
features_71_conv_8 = self.features_71_conv_8(features_71_conv_7)
add_65 = add_64.__add__(features_71_conv_8)
features_72_conv_0 = self.features_72_conv_0(add_65)
features_72_conv_1 = self.features_72_conv_1(features_72_conv_0)
sigmoid_179 = torch.sigmoid(features_72_conv_1)
mul_232 = features_72_conv_1.__mul__(sigmoid_179)
features_72_conv_3 = self.features_72_conv_3(mul_232)
features_72_conv_4 = self.features_72_conv_4(features_72_conv_3)
sigmoid_180 = torch.sigmoid(features_72_conv_4)
mul_233 = features_72_conv_4.__mul__(sigmoid_180)
size_54 = mul_233.size()
features_72_conv_6_avg_pool = self.features_72_conv_6_avg_pool(mul_233)
view_107 = features_72_conv_6_avg_pool.view(size_54[0], size_54[1])
features_72_conv_6_fc_0 = self.features_72_conv_6_fc_0(view_107)
sigmoid_181 = torch.sigmoid(features_72_conv_6_fc_0)
mul_234 = features_72_conv_6_fc_0.__mul__(sigmoid_181)
features_72_conv_6_fc_2 = self.features_72_conv_6_fc_2(mul_234)
features_72_conv_6_fc_3 = self.features_72_conv_6_fc_3(features_72_conv_6_fc_2)
view_108 = features_72_conv_6_fc_3.view(size_54[0], size_54[1], 1, 1)
mul_235 = mul_233.__mul__(view_108)
features_72_conv_7 = self.features_72_conv_7(mul_235)
features_72_conv_8 = self.features_72_conv_8(features_72_conv_7)
add_66 = add_65.__add__(features_72_conv_8)
features_73_conv_0 = self.features_73_conv_0(add_66)
features_73_conv_1 = self.features_73_conv_1(features_73_conv_0)
sigmoid_182 = torch.sigmoid(features_73_conv_1)
mul_236 = features_73_conv_1.__mul__(sigmoid_182)
features_73_conv_3 = self.features_73_conv_3(mul_236)
features_73_conv_4 = self.features_73_conv_4(features_73_conv_3)
sigmoid_183 = torch.sigmoid(features_73_conv_4)
mul_237 = features_73_conv_4.__mul__(sigmoid_183)
size_55 = mul_237.size()
features_73_conv_6_avg_pool = self.features_73_conv_6_avg_pool(mul_237)
view_109 = features_73_conv_6_avg_pool.view(size_55[0], size_55[1])
features_73_conv_6_fc_0 = self.features_73_conv_6_fc_0(view_109)
sigmoid_184 = torch.sigmoid(features_73_conv_6_fc_0)
mul_238 = features_73_conv_6_fc_0.__mul__(sigmoid_184)
features_73_conv_6_fc_2 = self.features_73_conv_6_fc_2(mul_238)
features_73_conv_6_fc_3 = self.features_73_conv_6_fc_3(features_73_conv_6_fc_2)
view_110 = features_73_conv_6_fc_3.view(size_55[0], size_55[1], 1, 1)
mul_239 = mul_237.__mul__(view_110)
features_73_conv_7 = self.features_73_conv_7(mul_239)
features_73_conv_8 = self.features_73_conv_8(features_73_conv_7)
features_74_conv_0 = self.features_74_conv_0(features_73_conv_8)
features_74_conv_1 = self.features_74_conv_1(features_74_conv_0)
sigmoid_185 = torch.sigmoid(features_74_conv_1)
mul_240 = features_74_conv_1.__mul__(sigmoid_185)
features_74_conv_3 = self.features_74_conv_3(mul_240)
features_74_conv_4 = self.features_74_conv_4(features_74_conv_3)
sigmoid_186 = torch.sigmoid(features_74_conv_4)
mul_241 = features_74_conv_4.__mul__(sigmoid_186)
size_56 = mul_241.size()
features_74_conv_6_avg_pool = self.features_74_conv_6_avg_pool(mul_241)
view_111 = features_74_conv_6_avg_pool.view(size_56[0], size_56[1])
features_74_conv_6_fc_0 = self.features_74_conv_6_fc_0(view_111)
sigmoid_187 = torch.sigmoid(features_74_conv_6_fc_0)
mul_242 = features_74_conv_6_fc_0.__mul__(sigmoid_187)
features_74_conv_6_fc_2 = self.features_74_conv_6_fc_2(mul_242)
features_74_conv_6_fc_3 = self.features_74_conv_6_fc_3(features_74_conv_6_fc_2)
view_112 = features_74_conv_6_fc_3.view(size_56[0], size_56[1], 1, 1)
mul_243 = mul_241.__mul__(view_112)
features_74_conv_7 = self.features_74_conv_7(mul_243)
features_74_conv_8 = self.features_74_conv_8(features_74_conv_7)
add_67 = features_73_conv_8.__add__(features_74_conv_8)
features_75_conv_0 = self.features_75_conv_0(add_67)
features_75_conv_1 = self.features_75_conv_1(features_75_conv_0)
sigmoid_188 = torch.sigmoid(features_75_conv_1)
mul_244 = features_75_conv_1.__mul__(sigmoid_188)
features_75_conv_3 = self.features_75_conv_3(mul_244)
features_75_conv_4 = self.features_75_conv_4(features_75_conv_3)
sigmoid_189 = torch.sigmoid(features_75_conv_4)
mul_245 = features_75_conv_4.__mul__(sigmoid_189)
size_57 = mul_245.size()
features_75_conv_6_avg_pool = self.features_75_conv_6_avg_pool(mul_245)
view_113 = features_75_conv_6_avg_pool.view(size_57[0], size_57[1])
features_75_conv_6_fc_0 = self.features_75_conv_6_fc_0(view_113)
sigmoid_190 = torch.sigmoid(features_75_conv_6_fc_0)
mul_246 = features_75_conv_6_fc_0.__mul__(sigmoid_190)
features_75_conv_6_fc_2 = self.features_75_conv_6_fc_2(mul_246)
features_75_conv_6_fc_3 = self.features_75_conv_6_fc_3(features_75_conv_6_fc_2)
view_114 = features_75_conv_6_fc_3.view(size_57[0], size_57[1], 1, 1)
mul_247 = mul_245.__mul__(view_114)
features_75_conv_7 = self.features_75_conv_7(mul_247)
features_75_conv_8 = self.features_75_conv_8(features_75_conv_7)
add_68 = add_67.__add__(features_75_conv_8)
features_76_conv_0 = self.features_76_conv_0(add_68)
features_76_conv_1 = self.features_76_conv_1(features_76_conv_0)
sigmoid_191 = torch.sigmoid(features_76_conv_1)
mul_248 = features_76_conv_1.__mul__(sigmoid_191)
features_76_conv_3 = self.features_76_conv_3(mul_248)
features_76_conv_4 = self.features_76_conv_4(features_76_conv_3)
sigmoid_192 = torch.sigmoid(features_76_conv_4)
mul_249 = features_76_conv_4.__mul__(sigmoid_192)
size_58 = mul_249.size()
features_76_conv_6_avg_pool = self.features_76_conv_6_avg_pool(mul_249)
view_115 = features_76_conv_6_avg_pool.view(size_58[0], size_58[1])
features_76_conv_6_fc_0 = self.features_76_conv_6_fc_0(view_115)
sigmoid_193 = torch.sigmoid(features_76_conv_6_fc_0)
mul_250 = features_76_conv_6_fc_0.__mul__(sigmoid_193)
features_76_conv_6_fc_2 = self.features_76_conv_6_fc_2(mul_250)
features_76_conv_6_fc_3 = self.features_76_conv_6_fc_3(features_76_conv_6_fc_2)
view_116 = features_76_conv_6_fc_3.view(size_58[0], size_58[1], 1, 1)
mul_251 = mul_249.__mul__(view_116)
features_76_conv_7 = self.features_76_conv_7(mul_251)
features_76_conv_8 = self.features_76_conv_8(features_76_conv_7)
add_69 = add_68.__add__(features_76_conv_8)
features_77_conv_0 = self.features_77_conv_0(add_69)
features_77_conv_1 = self.features_77_conv_1(features_77_conv_0)
sigmoid_194 = torch.sigmoid(features_77_conv_1)
mul_252 = features_77_conv_1.__mul__(sigmoid_194)
features_77_conv_3 = self.features_77_conv_3(mul_252)
features_77_conv_4 = self.features_77_conv_4(features_77_conv_3)
sigmoid_195 = torch.sigmoid(features_77_conv_4)
mul_253 = features_77_conv_4.__mul__(sigmoid_195)
size_59 = mul_253.size()
features_77_conv_6_avg_pool = self.features_77_conv_6_avg_pool(mul_253)
view_117 = features_77_conv_6_avg_pool.view(size_59[0], size_59[1])
features_77_conv_6_fc_0 = self.features_77_conv_6_fc_0(view_117)
sigmoid_196 = torch.sigmoid(features_77_conv_6_fc_0)
mul_254 = features_77_conv_6_fc_0.__mul__(sigmoid_196)
features_77_conv_6_fc_2 = self.features_77_conv_6_fc_2(mul_254)
features_77_conv_6_fc_3 = self.features_77_conv_6_fc_3(features_77_conv_6_fc_2)
view_118 = features_77_conv_6_fc_3.view(size_59[0], size_59[1], 1, 1)
mul_255 = mul_253.__mul__(view_118)
features_77_conv_7 = self.features_77_conv_7(mul_255)
features_77_conv_8 = self.features_77_conv_8(features_77_conv_7)
add_70 = add_69.__add__(features_77_conv_8)
features_78_conv_0 = self.features_78_conv_0(add_70)
features_78_conv_1 = self.features_78_conv_1(features_78_conv_0)
sigmoid_197 = torch.sigmoid(features_78_conv_1)
mul_256 = features_78_conv_1.__mul__(sigmoid_197)
features_78_conv_3 = self.features_78_conv_3(mul_256)
features_78_conv_4 = self.features_78_conv_4(features_78_conv_3)
sigmoid_198 = torch.sigmoid(features_78_conv_4)
mul_257 = features_78_conv_4.__mul__(sigmoid_198)
size_60 = mul_257.size()
features_78_conv_6_avg_pool = self.features_78_conv_6_avg_pool(mul_257)
view_119 = features_78_conv_6_avg_pool.view(size_60[0], size_60[1])
features_78_conv_6_fc_0 = self.features_78_conv_6_fc_0(view_119)
sigmoid_199 = torch.sigmoid(features_78_conv_6_fc_0)
mul_258 = features_78_conv_6_fc_0.__mul__(sigmoid_199)
features_78_conv_6_fc_2 = self.features_78_conv_6_fc_2(mul_258)
features_78_conv_6_fc_3 = self.features_78_conv_6_fc_3(features_78_conv_6_fc_2)
view_120 = features_78_conv_6_fc_3.view(size_60[0], size_60[1], 1, 1)
mul_259 = mul_257.__mul__(view_120)
features_78_conv_7 = self.features_78_conv_7(mul_259)
features_78_conv_8 = self.features_78_conv_8(features_78_conv_7)
add_71 = add_70.__add__(features_78_conv_8)
features_79_conv_0 = self.features_79_conv_0(add_71)
features_79_conv_1 = self.features_79_conv_1(features_79_conv_0)
sigmoid_200 = torch.sigmoid(features_79_conv_1)
mul_260 = features_79_conv_1.__mul__(sigmoid_200)
features_79_conv_3 = self.features_79_conv_3(mul_260)
features_79_conv_4 = self.features_79_conv_4(features_79_conv_3)
sigmoid_201 = torch.sigmoid(features_79_conv_4)
mul_261 = features_79_conv_4.__mul__(sigmoid_201)
size_61 = mul_261.size()
features_79_conv_6_avg_pool = self.features_79_conv_6_avg_pool(mul_261)
view_121 = features_79_conv_6_avg_pool.view(size_61[0], size_61[1])
features_79_conv_6_fc_0 = self.features_79_conv_6_fc_0(view_121)
sigmoid_202 = torch.sigmoid(features_79_conv_6_fc_0)
mul_262 = features_79_conv_6_fc_0.__mul__(sigmoid_202)
features_79_conv_6_fc_2 = self.features_79_conv_6_fc_2(mul_262)
features_79_conv_6_fc_3 = self.features_79_conv_6_fc_3(features_79_conv_6_fc_2)
view_122 = features_79_conv_6_fc_3.view(size_61[0], size_61[1], 1, 1)
mul_263 = mul_261.__mul__(view_122)
features_79_conv_7 = self.features_79_conv_7(mul_263)
features_79_conv_8 = self.features_79_conv_8(features_79_conv_7)
add_72 = add_71.__add__(features_79_conv_8)
conv_0 = self.conv_0(add_72)
conv_1 = self.conv_1(conv_0)
sigmoid_203 = torch.sigmoid(conv_1)
mul_264 = conv_1.__mul__(sigmoid_203)
avgpool = self.avgpool(mul_264)
size_62 = avgpool.size(0)
view_123 = avgpool.view(size_62, -1)
classifier = self.classifier(view_123)
return classifier
if __name__ == "__main__":
model = efficientnet_v2_l()
model.eval()
model.cpu()
dummy_input_0 = torch.ones((1, 3, 224, 224), dtype=torch.float32)
output = model(dummy_input_0)
print(output)