models/hrnet125.py (697 lines of code) (raw):

import torch import torch.nn import torch.functional import torch.nn.functional class hrnet125(torch.nn.Module): def __init__(self): super().__init__() self.conv1 = torch.nn.modules.conv.Conv2d(in_channels=3, out_channels=64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=1, bias=False, padding_mode="zeros") self.bn1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.relu1 = torch.nn.modules.activation.ReLU(False) self.downsample_conv1_0 = torch.nn.modules.conv.Conv2d(in_channels=64, out_channels=64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=64, bias=True, padding_mode="zeros") self.downsample_conv1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.downsample_conv1_2 = torch.nn.modules.activation.ReLU(False) self.downsample_conv1_3 = torch.nn.modules.conv.Conv2d(in_channels=64, out_channels=64, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.downsample_conv1_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.downsample_relu1 = torch.nn.modules.activation.ReLU(False) self.downsample_conv2_0 = torch.nn.modules.conv.Conv2d(in_channels=64, out_channels=64, kernel_size=(3, 3), stride=(1, 1), padding=(3, 3), dilation=(3, 3), groups=64, bias=True, padding_mode="zeros") self.downsample_conv2_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.downsample_conv2_2 = torch.nn.modules.activation.ReLU(False) self.downsample_conv2_3 = torch.nn.modules.conv.Conv2d(in_channels=64, out_channels=64, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.downsample_conv2_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.downsample_downsample_res_conv_0 = torch.nn.modules.conv.Conv2d(in_channels=64, out_channels=64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=64, bias=True, padding_mode="zeros") self.downsample_downsample_res_conv_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.downsample_downsample_res_conv_2 = torch.nn.modules.activation.ReLU(False) self.downsample_downsample_res_conv_3 = torch.nn.modules.conv.Conv2d(in_channels=64, out_channels=64, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.downsample_downsample_res_conv_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.downsample_relu2 = torch.nn.modules.activation.ReLU(False) self.layer1_0_conv1_0 = torch.nn.modules.conv.Conv2d(in_channels=64, out_channels=64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=64, bias=True, padding_mode="zeros") self.layer1_0_conv1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer1_0_conv1_2 = torch.nn.modules.activation.ReLU(False) self.layer1_0_conv1_3 = torch.nn.modules.conv.Conv2d(in_channels=64, out_channels=64, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.layer1_0_conv1_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer1_1_conv1_0 = torch.nn.modules.conv.Conv2d(in_channels=64, out_channels=64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=64, bias=True, padding_mode="zeros") self.layer1_1_conv1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.layer1_1_conv1_2 = torch.nn.modules.activation.ReLU(False) self.layer1_1_conv1_3 = torch.nn.modules.conv.Conv2d(in_channels=64, out_channels=64, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.layer1_1_conv1_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.cut1_0 = torch.nn.modules.conv.Conv2d(in_channels=64, out_channels=64, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.cut1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.cut1_2 = torch.nn.modules.activation.ReLU(False) self.transition1_0_0_0 = torch.nn.modules.conv.Conv2d(in_channels=64, out_channels=64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=64, bias=True, padding_mode="zeros") self.transition1_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.transition1_0_0_2 = torch.nn.modules.activation.ReLU(False) self.transition1_0_0_3 = torch.nn.modules.conv.Conv2d(in_channels=64, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.transition1_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.transition1_0_2 = torch.nn.modules.activation.ReLU(False) self.transition1_1_0_0_0 = torch.nn.modules.conv.Conv2d(in_channels=64, out_channels=64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=64, bias=True, padding_mode="zeros") self.transition1_1_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.transition1_1_0_0_2 = torch.nn.modules.activation.ReLU(False) self.transition1_1_0_0_3 = torch.nn.modules.conv.Conv2d(in_channels=64, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.transition1_1_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.transition1_1_0_2 = torch.nn.modules.activation.ReLU(False) self.stage2_0_branches_0_0_conv1_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=16, bias=True, padding_mode="zeros") self.stage2_0_branches_0_0_conv1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage2_0_branches_0_0_conv1_2 = torch.nn.modules.activation.ReLU(False) self.stage2_0_branches_0_0_conv1_3 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage2_0_branches_0_0_conv1_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage2_0_branches_0_1_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage2_0_branches_0_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage2_0_branches_0_1_2 = torch.nn.modules.activation.ReLU(False) self.stage2_0_branches_1_0_conv1_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=32, bias=True, padding_mode="zeros") self.stage2_0_branches_1_0_conv1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage2_0_branches_1_0_conv1_2 = torch.nn.modules.activation.ReLU(False) self.stage2_0_branches_1_0_conv1_3 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage2_0_branches_1_0_conv1_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage2_0_branches_1_1_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage2_0_branches_1_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage2_0_branches_1_1_2 = torch.nn.modules.activation.ReLU(False) self.stage2_0_fuse_layers_0_1_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=False, padding_mode="zeros") self.stage2_0_fuse_layers_0_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage2_0_fuse_layers_0_1_2 = torch.nn.modules.upsampling.Upsample(size=None, scale_factor=2.0, mode="nearest", align_corners=None) self.stage2_0_relu_cbrs_0_0_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage2_0_relu_cbrs_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage2_0_relu_cbrs_0_0_2 = torch.nn.modules.activation.ReLU(False) self.stage2_0_fuse_layers_1_0_0_0_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=16, bias=True, padding_mode="zeros") self.stage2_0_fuse_layers_1_0_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage2_0_fuse_layers_1_0_0_0_2 = torch.nn.modules.activation.ReLU(False) self.stage2_0_fuse_layers_1_0_0_0_3 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage2_0_fuse_layers_1_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage2_0_relu_cbrs_1_0_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage2_0_relu_cbrs_1_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage2_0_relu_cbrs_1_0_2 = torch.nn.modules.activation.ReLU(False) self.transition2_2_0_0_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=32, bias=True, padding_mode="zeros") self.transition2_2_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.transition2_2_0_0_2 = torch.nn.modules.activation.ReLU(False) self.transition2_2_0_0_3 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=56, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.transition2_2_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.transition2_2_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_0_branches_0_0_conv1_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=16, bias=True, padding_mode="zeros") self.stage3_0_branches_0_0_conv1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_branches_0_0_conv1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_0_branches_0_0_conv1_3 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_0_branches_0_0_conv1_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_branches_0_1_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_0_branches_0_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_branches_0_1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_0_branches_1_0_conv1_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=32, bias=True, padding_mode="zeros") self.stage3_0_branches_1_0_conv1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_branches_1_0_conv1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_0_branches_1_0_conv1_3 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_0_branches_1_0_conv1_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_branches_1_1_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_0_branches_1_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_branches_1_1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_0_branches_2_0_conv1_0 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=56, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=56, bias=True, padding_mode="zeros") self.stage3_0_branches_2_0_conv1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_branches_2_0_conv1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_0_branches_2_0_conv1_3 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=56, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_0_branches_2_0_conv1_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_branches_2_1_0 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=56, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_0_branches_2_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_branches_2_1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_0_fuse_layers_0_1_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=False, padding_mode="zeros") self.stage3_0_fuse_layers_0_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_fuse_layers_0_1_2 = torch.nn.modules.upsampling.Upsample(size=None, scale_factor=2.0, mode="nearest", align_corners=None) self.stage3_0_fuse_layers_0_2_0 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=False, padding_mode="zeros") self.stage3_0_fuse_layers_0_2_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_fuse_layers_0_2_2 = torch.nn.modules.upsampling.Upsample(size=None, scale_factor=4.0, mode="nearest", align_corners=None) self.stage3_0_relu_cbrs_0_0_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_0_relu_cbrs_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_relu_cbrs_0_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_0_fuse_layers_1_0_0_0_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=16, bias=True, padding_mode="zeros") self.stage3_0_fuse_layers_1_0_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_fuse_layers_1_0_0_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_0_fuse_layers_1_0_0_0_3 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_0_fuse_layers_1_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_fuse_layers_1_2_0 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=False, padding_mode="zeros") self.stage3_0_fuse_layers_1_2_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_fuse_layers_1_2_2 = torch.nn.modules.upsampling.Upsample(size=None, scale_factor=2.0, mode="nearest", align_corners=None) self.stage3_0_relu_cbrs_1_0_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_0_relu_cbrs_1_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_relu_cbrs_1_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_0_fuse_layers_2_0_0_0_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=16, bias=True, padding_mode="zeros") self.stage3_0_fuse_layers_2_0_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_fuse_layers_2_0_0_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_0_fuse_layers_2_0_0_0_3 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_0_fuse_layers_2_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_fuse_layers_2_0_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_0_fuse_layers_2_0_1_0_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=16, bias=True, padding_mode="zeros") self.stage3_0_fuse_layers_2_0_1_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_fuse_layers_2_0_1_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_0_fuse_layers_2_0_1_0_3 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=56, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_0_fuse_layers_2_0_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_fuse_layers_2_1_0_0_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=32, bias=True, padding_mode="zeros") self.stage3_0_fuse_layers_2_1_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_fuse_layers_2_1_0_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_0_fuse_layers_2_1_0_0_3 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=56, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_0_fuse_layers_2_1_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_relu_cbrs_2_0_0 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=56, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_0_relu_cbrs_2_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_0_relu_cbrs_2_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_1_branches_0_0_conv1_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=16, bias=True, padding_mode="zeros") self.stage3_1_branches_0_0_conv1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_branches_0_0_conv1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_1_branches_0_0_conv1_3 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_1_branches_0_0_conv1_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_branches_0_1_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_1_branches_0_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_branches_0_1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_1_branches_1_0_conv1_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=32, bias=True, padding_mode="zeros") self.stage3_1_branches_1_0_conv1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_branches_1_0_conv1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_1_branches_1_0_conv1_3 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_1_branches_1_0_conv1_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_branches_1_1_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_1_branches_1_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_branches_1_1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_1_branches_2_0_conv1_0 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=56, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=56, bias=True, padding_mode="zeros") self.stage3_1_branches_2_0_conv1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_branches_2_0_conv1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_1_branches_2_0_conv1_3 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=56, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_1_branches_2_0_conv1_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_branches_2_1_0 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=56, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_1_branches_2_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_branches_2_1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_1_fuse_layers_0_1_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=False, padding_mode="zeros") self.stage3_1_fuse_layers_0_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_fuse_layers_0_1_2 = torch.nn.modules.upsampling.Upsample(size=None, scale_factor=2.0, mode="nearest", align_corners=None) self.stage3_1_fuse_layers_0_2_0 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=False, padding_mode="zeros") self.stage3_1_fuse_layers_0_2_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_fuse_layers_0_2_2 = torch.nn.modules.upsampling.Upsample(size=None, scale_factor=4.0, mode="nearest", align_corners=None) self.stage3_1_relu_cbrs_0_0_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_1_relu_cbrs_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_relu_cbrs_0_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_1_fuse_layers_1_0_0_0_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=16, bias=True, padding_mode="zeros") self.stage3_1_fuse_layers_1_0_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_fuse_layers_1_0_0_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_1_fuse_layers_1_0_0_0_3 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_1_fuse_layers_1_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_fuse_layers_1_2_0 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=False, padding_mode="zeros") self.stage3_1_fuse_layers_1_2_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_fuse_layers_1_2_2 = torch.nn.modules.upsampling.Upsample(size=None, scale_factor=2.0, mode="nearest", align_corners=None) self.stage3_1_relu_cbrs_1_0_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_1_relu_cbrs_1_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_relu_cbrs_1_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_1_fuse_layers_2_0_0_0_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=16, bias=True, padding_mode="zeros") self.stage3_1_fuse_layers_2_0_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_fuse_layers_2_0_0_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_1_fuse_layers_2_0_0_0_3 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_1_fuse_layers_2_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_fuse_layers_2_0_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_1_fuse_layers_2_0_1_0_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=16, bias=True, padding_mode="zeros") self.stage3_1_fuse_layers_2_0_1_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_fuse_layers_2_0_1_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_1_fuse_layers_2_0_1_0_3 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=56, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_1_fuse_layers_2_0_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_fuse_layers_2_1_0_0_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=32, bias=True, padding_mode="zeros") self.stage3_1_fuse_layers_2_1_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_fuse_layers_2_1_0_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_1_fuse_layers_2_1_0_0_3 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=56, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_1_fuse_layers_2_1_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_relu_cbrs_2_0_0 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=56, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_1_relu_cbrs_2_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_1_relu_cbrs_2_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_2_branches_0_0_conv1_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=16, bias=True, padding_mode="zeros") self.stage3_2_branches_0_0_conv1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_branches_0_0_conv1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_2_branches_0_0_conv1_3 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_2_branches_0_0_conv1_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_branches_0_1_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_2_branches_0_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_branches_0_1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_2_branches_1_0_conv1_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=32, bias=True, padding_mode="zeros") self.stage3_2_branches_1_0_conv1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_branches_1_0_conv1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_2_branches_1_0_conv1_3 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_2_branches_1_0_conv1_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_branches_1_1_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_2_branches_1_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_branches_1_1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_2_branches_2_0_conv1_0 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=56, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=56, bias=True, padding_mode="zeros") self.stage3_2_branches_2_0_conv1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_branches_2_0_conv1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_2_branches_2_0_conv1_3 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=56, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_2_branches_2_0_conv1_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_branches_2_1_0 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=56, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_2_branches_2_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_branches_2_1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_2_fuse_layers_0_1_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=False, padding_mode="zeros") self.stage3_2_fuse_layers_0_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_fuse_layers_0_1_2 = torch.nn.modules.upsampling.Upsample(size=None, scale_factor=2.0, mode="nearest", align_corners=None) self.stage3_2_fuse_layers_0_2_0 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=False, padding_mode="zeros") self.stage3_2_fuse_layers_0_2_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_fuse_layers_0_2_2 = torch.nn.modules.upsampling.Upsample(size=None, scale_factor=4.0, mode="nearest", align_corners=None) self.stage3_2_relu_cbrs_0_0_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_2_relu_cbrs_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_relu_cbrs_0_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_2_fuse_layers_1_0_0_0_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=16, bias=True, padding_mode="zeros") self.stage3_2_fuse_layers_1_0_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_fuse_layers_1_0_0_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_2_fuse_layers_1_0_0_0_3 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_2_fuse_layers_1_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_fuse_layers_1_2_0 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=False, padding_mode="zeros") self.stage3_2_fuse_layers_1_2_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_fuse_layers_1_2_2 = torch.nn.modules.upsampling.Upsample(size=None, scale_factor=2.0, mode="nearest", align_corners=None) self.stage3_2_relu_cbrs_1_0_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_2_relu_cbrs_1_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_relu_cbrs_1_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_2_fuse_layers_2_0_0_0_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=16, bias=True, padding_mode="zeros") self.stage3_2_fuse_layers_2_0_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_fuse_layers_2_0_0_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_2_fuse_layers_2_0_0_0_3 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_2_fuse_layers_2_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_fuse_layers_2_0_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_2_fuse_layers_2_0_1_0_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=16, bias=True, padding_mode="zeros") self.stage3_2_fuse_layers_2_0_1_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_fuse_layers_2_0_1_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_2_fuse_layers_2_0_1_0_3 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=56, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_2_fuse_layers_2_0_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_fuse_layers_2_1_0_0_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=32, bias=True, padding_mode="zeros") self.stage3_2_fuse_layers_2_1_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_fuse_layers_2_1_0_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_2_fuse_layers_2_1_0_0_3 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=56, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_2_fuse_layers_2_1_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_relu_cbrs_2_0_0 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=56, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_2_relu_cbrs_2_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_2_relu_cbrs_2_0_2 = torch.nn.modules.activation.ReLU(False) self.stage3_3_branches_0_0_conv1_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=16, bias=True, padding_mode="zeros") self.stage3_3_branches_0_0_conv1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_3_branches_0_0_conv1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_3_branches_0_0_conv1_3 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_3_branches_0_0_conv1_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_3_branches_0_1_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_3_branches_0_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_3_branches_0_1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_3_branches_1_0_conv1_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=32, bias=True, padding_mode="zeros") self.stage3_3_branches_1_0_conv1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_3_branches_1_0_conv1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_3_branches_1_0_conv1_3 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_3_branches_1_0_conv1_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_3_branches_1_1_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=32, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_3_branches_1_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_3_branches_1_1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_3_branches_2_0_conv1_0 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=56, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=56, bias=True, padding_mode="zeros") self.stage3_3_branches_2_0_conv1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_3_branches_2_0_conv1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_3_branches_2_0_conv1_3 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=56, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_3_branches_2_0_conv1_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_3_branches_2_1_0 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=56, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_3_branches_2_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=56, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_3_branches_2_1_2 = torch.nn.modules.activation.ReLU(False) self.stage3_3_fuse_layers_0_1_0 = torch.nn.modules.conv.Conv2d(in_channels=32, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=False, padding_mode="zeros") self.stage3_3_fuse_layers_0_1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_3_fuse_layers_0_1_2 = torch.nn.modules.upsampling.Upsample(size=None, scale_factor=2.0, mode="nearest", align_corners=None) self.stage3_3_fuse_layers_0_2_0 = torch.nn.modules.conv.Conv2d(in_channels=56, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=False, padding_mode="zeros") self.stage3_3_fuse_layers_0_2_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_3_fuse_layers_0_2_2 = torch.nn.modules.upsampling.Upsample(size=None, scale_factor=4.0, mode="nearest", align_corners=None) self.stage3_3_relu_cbrs_0_0_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.stage3_3_relu_cbrs_0_0_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.stage3_3_relu_cbrs_0_0_2 = torch.nn.modules.activation.ReLU(False) self.final_layers_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=46, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.deconv_layers_0_0_0 = torch.nn.modules.upsampling.Upsample(size=None, scale_factor=2.0, mode="nearest", align_corners=None) self.deconv_layers_0_0_1 = torch.nn.modules.conv.Conv2d(in_channels=62, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=False, padding_mode="zeros") self.deconv_layers_0_0_2 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.deconv_layers_0_0_3 = torch.nn.modules.activation.ReLU(False) self.deconv_layers_0_1_0_conv1_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=16, bias=True, padding_mode="zeros") self.deconv_layers_0_1_0_conv1_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.deconv_layers_0_1_0_conv1_2 = torch.nn.modules.activation.ReLU(False) self.deconv_layers_0_1_0_conv1_3 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.deconv_layers_0_1_0_conv1_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.deconv_layers_0_1_0_relu1 = torch.nn.modules.activation.ReLU(False) self.deconv_layers_0_1_0_conv2_0 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(3, 3), stride=(1, 1), padding=(3, 3), dilation=(3, 3), groups=16, bias=True, padding_mode="zeros") self.deconv_layers_0_1_0_conv2_1 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.deconv_layers_0_1_0_conv2_2 = torch.nn.modules.activation.ReLU(False) self.deconv_layers_0_1_0_conv2_3 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=16, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") self.deconv_layers_0_1_0_conv2_4 = torch.nn.modules.batchnorm.BatchNorm2d(num_features=16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) self.final_layers_1 = torch.nn.modules.conv.Conv2d(in_channels=16, out_channels=23, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, padding_mode="zeros") def forward(self, input_1): conv1 = self.conv1(input_1) bn1 = self.bn1(conv1) relu1 = self.relu1(bn1) downsample_conv1_0 = self.downsample_conv1_0(relu1) downsample_conv1_1 = self.downsample_conv1_1(downsample_conv1_0) downsample_conv1_2 = self.downsample_conv1_2(downsample_conv1_1) downsample_conv1_3 = self.downsample_conv1_3(downsample_conv1_2) downsample_conv1_4 = self.downsample_conv1_4(downsample_conv1_3) downsample_relu1 = self.downsample_relu1(downsample_conv1_4) downsample_conv2_0 = self.downsample_conv2_0(downsample_relu1) downsample_conv2_1 = self.downsample_conv2_1(downsample_conv2_0) downsample_conv2_2 = self.downsample_conv2_2(downsample_conv2_1) downsample_conv2_3 = self.downsample_conv2_3(downsample_conv2_2) downsample_conv2_4 = self.downsample_conv2_4(downsample_conv2_3) downsample_downsample_res_conv_0 = self.downsample_downsample_res_conv_0(relu1) downsample_downsample_res_conv_1 = self.downsample_downsample_res_conv_1(downsample_downsample_res_conv_0) downsample_downsample_res_conv_2 = self.downsample_downsample_res_conv_2(downsample_downsample_res_conv_1) downsample_downsample_res_conv_3 = self.downsample_downsample_res_conv_3(downsample_downsample_res_conv_2) downsample_downsample_res_conv_4 = self.downsample_downsample_res_conv_4(downsample_downsample_res_conv_3) add_1 = torch.add(downsample_conv2_4, downsample_downsample_res_conv_4) downsample_relu2 = self.downsample_relu2(add_1) layer1_0_conv1_0 = self.layer1_0_conv1_0(downsample_relu2) layer1_0_conv1_1 = self.layer1_0_conv1_1(layer1_0_conv1_0) layer1_0_conv1_2 = self.layer1_0_conv1_2(layer1_0_conv1_1) layer1_0_conv1_3 = self.layer1_0_conv1_3(layer1_0_conv1_2) layer1_0_conv1_4 = self.layer1_0_conv1_4(layer1_0_conv1_3) add_2 = torch.add(layer1_0_conv1_4, downsample_relu2) layer1_1_conv1_0 = self.layer1_1_conv1_0(add_2) layer1_1_conv1_1 = self.layer1_1_conv1_1(layer1_1_conv1_0) layer1_1_conv1_2 = self.layer1_1_conv1_2(layer1_1_conv1_1) layer1_1_conv1_3 = self.layer1_1_conv1_3(layer1_1_conv1_2) layer1_1_conv1_4 = self.layer1_1_conv1_4(layer1_1_conv1_3) add_3 = torch.add(layer1_1_conv1_4, add_2) cut1_0 = self.cut1_0(add_3) cut1_1 = self.cut1_1(cut1_0) cut1_2 = self.cut1_2(cut1_1) transition1_0_0_0 = self.transition1_0_0_0(cut1_2) transition1_0_0_1 = self.transition1_0_0_1(transition1_0_0_0) transition1_0_0_2 = self.transition1_0_0_2(transition1_0_0_1) transition1_0_0_3 = self.transition1_0_0_3(transition1_0_0_2) transition1_0_1 = self.transition1_0_1(transition1_0_0_3) transition1_0_2 = self.transition1_0_2(transition1_0_1) transition1_1_0_0_0 = self.transition1_1_0_0_0(cut1_2) transition1_1_0_0_1 = self.transition1_1_0_0_1(transition1_1_0_0_0) transition1_1_0_0_2 = self.transition1_1_0_0_2(transition1_1_0_0_1) transition1_1_0_0_3 = self.transition1_1_0_0_3(transition1_1_0_0_2) transition1_1_0_1 = self.transition1_1_0_1(transition1_1_0_0_3) transition1_1_0_2 = self.transition1_1_0_2(transition1_1_0_1) stage2_0_branches_0_0_conv1_0 = self.stage2_0_branches_0_0_conv1_0(transition1_0_2) stage2_0_branches_0_0_conv1_1 = self.stage2_0_branches_0_0_conv1_1(stage2_0_branches_0_0_conv1_0) stage2_0_branches_0_0_conv1_2 = self.stage2_0_branches_0_0_conv1_2(stage2_0_branches_0_0_conv1_1) stage2_0_branches_0_0_conv1_3 = self.stage2_0_branches_0_0_conv1_3(stage2_0_branches_0_0_conv1_2) stage2_0_branches_0_0_conv1_4 = self.stage2_0_branches_0_0_conv1_4(stage2_0_branches_0_0_conv1_3) add_4 = torch.add(stage2_0_branches_0_0_conv1_4, transition1_0_2) stage2_0_branches_0_1_0 = self.stage2_0_branches_0_1_0(add_4) stage2_0_branches_0_1_1 = self.stage2_0_branches_0_1_1(stage2_0_branches_0_1_0) stage2_0_branches_0_1_2 = self.stage2_0_branches_0_1_2(stage2_0_branches_0_1_1) stage2_0_branches_1_0_conv1_0 = self.stage2_0_branches_1_0_conv1_0(transition1_1_0_2) stage2_0_branches_1_0_conv1_1 = self.stage2_0_branches_1_0_conv1_1(stage2_0_branches_1_0_conv1_0) stage2_0_branches_1_0_conv1_2 = self.stage2_0_branches_1_0_conv1_2(stage2_0_branches_1_0_conv1_1) stage2_0_branches_1_0_conv1_3 = self.stage2_0_branches_1_0_conv1_3(stage2_0_branches_1_0_conv1_2) stage2_0_branches_1_0_conv1_4 = self.stage2_0_branches_1_0_conv1_4(stage2_0_branches_1_0_conv1_3) add_5 = torch.add(stage2_0_branches_1_0_conv1_4, transition1_1_0_2) stage2_0_branches_1_1_0 = self.stage2_0_branches_1_1_0(add_5) stage2_0_branches_1_1_1 = self.stage2_0_branches_1_1_1(stage2_0_branches_1_1_0) stage2_0_branches_1_1_2 = self.stage2_0_branches_1_1_2(stage2_0_branches_1_1_1) stage2_0_fuse_layers_0_1_0 = self.stage2_0_fuse_layers_0_1_0(stage2_0_branches_1_1_2) stage2_0_fuse_layers_0_1_1 = self.stage2_0_fuse_layers_0_1_1(stage2_0_fuse_layers_0_1_0) stage2_0_fuse_layers_0_1_2 = self.stage2_0_fuse_layers_0_1_2(stage2_0_fuse_layers_0_1_1) add_6 = torch.add(stage2_0_branches_0_1_2, stage2_0_fuse_layers_0_1_2) stage2_0_relu_cbrs_0_0_0 = self.stage2_0_relu_cbrs_0_0_0(add_6) stage2_0_relu_cbrs_0_0_1 = self.stage2_0_relu_cbrs_0_0_1(stage2_0_relu_cbrs_0_0_0) stage2_0_relu_cbrs_0_0_2 = self.stage2_0_relu_cbrs_0_0_2(stage2_0_relu_cbrs_0_0_1) stage2_0_fuse_layers_1_0_0_0_0 = self.stage2_0_fuse_layers_1_0_0_0_0(stage2_0_branches_0_1_2) stage2_0_fuse_layers_1_0_0_0_1 = self.stage2_0_fuse_layers_1_0_0_0_1(stage2_0_fuse_layers_1_0_0_0_0) stage2_0_fuse_layers_1_0_0_0_2 = self.stage2_0_fuse_layers_1_0_0_0_2(stage2_0_fuse_layers_1_0_0_0_1) stage2_0_fuse_layers_1_0_0_0_3 = self.stage2_0_fuse_layers_1_0_0_0_3(stage2_0_fuse_layers_1_0_0_0_2) stage2_0_fuse_layers_1_0_0_1 = self.stage2_0_fuse_layers_1_0_0_1(stage2_0_fuse_layers_1_0_0_0_3) add_7 = torch.add(stage2_0_fuse_layers_1_0_0_1, stage2_0_branches_1_1_2) stage2_0_relu_cbrs_1_0_0 = self.stage2_0_relu_cbrs_1_0_0(add_7) stage2_0_relu_cbrs_1_0_1 = self.stage2_0_relu_cbrs_1_0_1(stage2_0_relu_cbrs_1_0_0) stage2_0_relu_cbrs_1_0_2 = self.stage2_0_relu_cbrs_1_0_2(stage2_0_relu_cbrs_1_0_1) transition2_2_0_0_0 = self.transition2_2_0_0_0(stage2_0_relu_cbrs_1_0_2) transition2_2_0_0_1 = self.transition2_2_0_0_1(transition2_2_0_0_0) transition2_2_0_0_2 = self.transition2_2_0_0_2(transition2_2_0_0_1) transition2_2_0_0_3 = self.transition2_2_0_0_3(transition2_2_0_0_2) transition2_2_0_1 = self.transition2_2_0_1(transition2_2_0_0_3) transition2_2_0_2 = self.transition2_2_0_2(transition2_2_0_1) stage3_0_branches_0_0_conv1_0 = self.stage3_0_branches_0_0_conv1_0(stage2_0_relu_cbrs_0_0_2) stage3_0_branches_0_0_conv1_1 = self.stage3_0_branches_0_0_conv1_1(stage3_0_branches_0_0_conv1_0) stage3_0_branches_0_0_conv1_2 = self.stage3_0_branches_0_0_conv1_2(stage3_0_branches_0_0_conv1_1) stage3_0_branches_0_0_conv1_3 = self.stage3_0_branches_0_0_conv1_3(stage3_0_branches_0_0_conv1_2) stage3_0_branches_0_0_conv1_4 = self.stage3_0_branches_0_0_conv1_4(stage3_0_branches_0_0_conv1_3) add_8 = torch.add(stage3_0_branches_0_0_conv1_4, stage2_0_relu_cbrs_0_0_2) stage3_0_branches_0_1_0 = self.stage3_0_branches_0_1_0(add_8) stage3_0_branches_0_1_1 = self.stage3_0_branches_0_1_1(stage3_0_branches_0_1_0) stage3_0_branches_0_1_2 = self.stage3_0_branches_0_1_2(stage3_0_branches_0_1_1) stage3_0_branches_1_0_conv1_0 = self.stage3_0_branches_1_0_conv1_0(stage2_0_relu_cbrs_1_0_2) stage3_0_branches_1_0_conv1_1 = self.stage3_0_branches_1_0_conv1_1(stage3_0_branches_1_0_conv1_0) stage3_0_branches_1_0_conv1_2 = self.stage3_0_branches_1_0_conv1_2(stage3_0_branches_1_0_conv1_1) stage3_0_branches_1_0_conv1_3 = self.stage3_0_branches_1_0_conv1_3(stage3_0_branches_1_0_conv1_2) stage3_0_branches_1_0_conv1_4 = self.stage3_0_branches_1_0_conv1_4(stage3_0_branches_1_0_conv1_3) add_9 = torch.add(stage3_0_branches_1_0_conv1_4, stage2_0_relu_cbrs_1_0_2) stage3_0_branches_1_1_0 = self.stage3_0_branches_1_1_0(add_9) stage3_0_branches_1_1_1 = self.stage3_0_branches_1_1_1(stage3_0_branches_1_1_0) stage3_0_branches_1_1_2 = self.stage3_0_branches_1_1_2(stage3_0_branches_1_1_1) stage3_0_branches_2_0_conv1_0 = self.stage3_0_branches_2_0_conv1_0(transition2_2_0_2) stage3_0_branches_2_0_conv1_1 = self.stage3_0_branches_2_0_conv1_1(stage3_0_branches_2_0_conv1_0) stage3_0_branches_2_0_conv1_2 = self.stage3_0_branches_2_0_conv1_2(stage3_0_branches_2_0_conv1_1) stage3_0_branches_2_0_conv1_3 = self.stage3_0_branches_2_0_conv1_3(stage3_0_branches_2_0_conv1_2) stage3_0_branches_2_0_conv1_4 = self.stage3_0_branches_2_0_conv1_4(stage3_0_branches_2_0_conv1_3) add_10 = torch.add(stage3_0_branches_2_0_conv1_4, transition2_2_0_2) stage3_0_branches_2_1_0 = self.stage3_0_branches_2_1_0(add_10) stage3_0_branches_2_1_1 = self.stage3_0_branches_2_1_1(stage3_0_branches_2_1_0) stage3_0_branches_2_1_2 = self.stage3_0_branches_2_1_2(stage3_0_branches_2_1_1) stage3_0_fuse_layers_0_1_0 = self.stage3_0_fuse_layers_0_1_0(stage3_0_branches_1_1_2) stage3_0_fuse_layers_0_1_1 = self.stage3_0_fuse_layers_0_1_1(stage3_0_fuse_layers_0_1_0) stage3_0_fuse_layers_0_1_2 = self.stage3_0_fuse_layers_0_1_2(stage3_0_fuse_layers_0_1_1) add_11 = torch.add(stage3_0_branches_0_1_2, stage3_0_fuse_layers_0_1_2) stage3_0_fuse_layers_0_2_0 = self.stage3_0_fuse_layers_0_2_0(stage3_0_branches_2_1_2) stage3_0_fuse_layers_0_2_1 = self.stage3_0_fuse_layers_0_2_1(stage3_0_fuse_layers_0_2_0) stage3_0_fuse_layers_0_2_2 = self.stage3_0_fuse_layers_0_2_2(stage3_0_fuse_layers_0_2_1) add_12 = torch.add(add_11, stage3_0_fuse_layers_0_2_2) stage3_0_relu_cbrs_0_0_0 = self.stage3_0_relu_cbrs_0_0_0(add_12) stage3_0_relu_cbrs_0_0_1 = self.stage3_0_relu_cbrs_0_0_1(stage3_0_relu_cbrs_0_0_0) stage3_0_relu_cbrs_0_0_2 = self.stage3_0_relu_cbrs_0_0_2(stage3_0_relu_cbrs_0_0_1) stage3_0_fuse_layers_1_0_0_0_0 = self.stage3_0_fuse_layers_1_0_0_0_0(stage3_0_branches_0_1_2) stage3_0_fuse_layers_1_0_0_0_1 = self.stage3_0_fuse_layers_1_0_0_0_1(stage3_0_fuse_layers_1_0_0_0_0) stage3_0_fuse_layers_1_0_0_0_2 = self.stage3_0_fuse_layers_1_0_0_0_2(stage3_0_fuse_layers_1_0_0_0_1) stage3_0_fuse_layers_1_0_0_0_3 = self.stage3_0_fuse_layers_1_0_0_0_3(stage3_0_fuse_layers_1_0_0_0_2) stage3_0_fuse_layers_1_0_0_1 = self.stage3_0_fuse_layers_1_0_0_1(stage3_0_fuse_layers_1_0_0_0_3) add_13 = torch.add(stage3_0_fuse_layers_1_0_0_1, stage3_0_branches_1_1_2) stage3_0_fuse_layers_1_2_0 = self.stage3_0_fuse_layers_1_2_0(stage3_0_branches_2_1_2) stage3_0_fuse_layers_1_2_1 = self.stage3_0_fuse_layers_1_2_1(stage3_0_fuse_layers_1_2_0) stage3_0_fuse_layers_1_2_2 = self.stage3_0_fuse_layers_1_2_2(stage3_0_fuse_layers_1_2_1) add_14 = torch.add(add_13, stage3_0_fuse_layers_1_2_2) stage3_0_relu_cbrs_1_0_0 = self.stage3_0_relu_cbrs_1_0_0(add_14) stage3_0_relu_cbrs_1_0_1 = self.stage3_0_relu_cbrs_1_0_1(stage3_0_relu_cbrs_1_0_0) stage3_0_relu_cbrs_1_0_2 = self.stage3_0_relu_cbrs_1_0_2(stage3_0_relu_cbrs_1_0_1) stage3_0_fuse_layers_2_0_0_0_0 = self.stage3_0_fuse_layers_2_0_0_0_0(stage3_0_branches_0_1_2) stage3_0_fuse_layers_2_0_0_0_1 = self.stage3_0_fuse_layers_2_0_0_0_1(stage3_0_fuse_layers_2_0_0_0_0) stage3_0_fuse_layers_2_0_0_0_2 = self.stage3_0_fuse_layers_2_0_0_0_2(stage3_0_fuse_layers_2_0_0_0_1) stage3_0_fuse_layers_2_0_0_0_3 = self.stage3_0_fuse_layers_2_0_0_0_3(stage3_0_fuse_layers_2_0_0_0_2) stage3_0_fuse_layers_2_0_0_1 = self.stage3_0_fuse_layers_2_0_0_1(stage3_0_fuse_layers_2_0_0_0_3) stage3_0_fuse_layers_2_0_0_2 = self.stage3_0_fuse_layers_2_0_0_2(stage3_0_fuse_layers_2_0_0_1) stage3_0_fuse_layers_2_0_1_0_0 = self.stage3_0_fuse_layers_2_0_1_0_0(stage3_0_fuse_layers_2_0_0_2) stage3_0_fuse_layers_2_0_1_0_1 = self.stage3_0_fuse_layers_2_0_1_0_1(stage3_0_fuse_layers_2_0_1_0_0) stage3_0_fuse_layers_2_0_1_0_2 = self.stage3_0_fuse_layers_2_0_1_0_2(stage3_0_fuse_layers_2_0_1_0_1) stage3_0_fuse_layers_2_0_1_0_3 = self.stage3_0_fuse_layers_2_0_1_0_3(stage3_0_fuse_layers_2_0_1_0_2) stage3_0_fuse_layers_2_0_1_1 = self.stage3_0_fuse_layers_2_0_1_1(stage3_0_fuse_layers_2_0_1_0_3) stage3_0_fuse_layers_2_1_0_0_0 = self.stage3_0_fuse_layers_2_1_0_0_0(stage3_0_branches_1_1_2) stage3_0_fuse_layers_2_1_0_0_1 = self.stage3_0_fuse_layers_2_1_0_0_1(stage3_0_fuse_layers_2_1_0_0_0) stage3_0_fuse_layers_2_1_0_0_2 = self.stage3_0_fuse_layers_2_1_0_0_2(stage3_0_fuse_layers_2_1_0_0_1) stage3_0_fuse_layers_2_1_0_0_3 = self.stage3_0_fuse_layers_2_1_0_0_3(stage3_0_fuse_layers_2_1_0_0_2) stage3_0_fuse_layers_2_1_0_1 = self.stage3_0_fuse_layers_2_1_0_1(stage3_0_fuse_layers_2_1_0_0_3) add_15 = torch.add(stage3_0_fuse_layers_2_0_1_1, stage3_0_fuse_layers_2_1_0_1) add_16 = torch.add(add_15, stage3_0_branches_2_1_2) stage3_0_relu_cbrs_2_0_0 = self.stage3_0_relu_cbrs_2_0_0(add_16) stage3_0_relu_cbrs_2_0_1 = self.stage3_0_relu_cbrs_2_0_1(stage3_0_relu_cbrs_2_0_0) stage3_0_relu_cbrs_2_0_2 = self.stage3_0_relu_cbrs_2_0_2(stage3_0_relu_cbrs_2_0_1) stage3_1_branches_0_0_conv1_0 = self.stage3_1_branches_0_0_conv1_0(stage3_0_relu_cbrs_0_0_2) stage3_1_branches_0_0_conv1_1 = self.stage3_1_branches_0_0_conv1_1(stage3_1_branches_0_0_conv1_0) stage3_1_branches_0_0_conv1_2 = self.stage3_1_branches_0_0_conv1_2(stage3_1_branches_0_0_conv1_1) stage3_1_branches_0_0_conv1_3 = self.stage3_1_branches_0_0_conv1_3(stage3_1_branches_0_0_conv1_2) stage3_1_branches_0_0_conv1_4 = self.stage3_1_branches_0_0_conv1_4(stage3_1_branches_0_0_conv1_3) add_17 = torch.add(stage3_1_branches_0_0_conv1_4, stage3_0_relu_cbrs_0_0_2) stage3_1_branches_0_1_0 = self.stage3_1_branches_0_1_0(add_17) stage3_1_branches_0_1_1 = self.stage3_1_branches_0_1_1(stage3_1_branches_0_1_0) stage3_1_branches_0_1_2 = self.stage3_1_branches_0_1_2(stage3_1_branches_0_1_1) stage3_1_branches_1_0_conv1_0 = self.stage3_1_branches_1_0_conv1_0(stage3_0_relu_cbrs_1_0_2) stage3_1_branches_1_0_conv1_1 = self.stage3_1_branches_1_0_conv1_1(stage3_1_branches_1_0_conv1_0) stage3_1_branches_1_0_conv1_2 = self.stage3_1_branches_1_0_conv1_2(stage3_1_branches_1_0_conv1_1) stage3_1_branches_1_0_conv1_3 = self.stage3_1_branches_1_0_conv1_3(stage3_1_branches_1_0_conv1_2) stage3_1_branches_1_0_conv1_4 = self.stage3_1_branches_1_0_conv1_4(stage3_1_branches_1_0_conv1_3) add_18 = torch.add(stage3_1_branches_1_0_conv1_4, stage3_0_relu_cbrs_1_0_2) stage3_1_branches_1_1_0 = self.stage3_1_branches_1_1_0(add_18) stage3_1_branches_1_1_1 = self.stage3_1_branches_1_1_1(stage3_1_branches_1_1_0) stage3_1_branches_1_1_2 = self.stage3_1_branches_1_1_2(stage3_1_branches_1_1_1) stage3_1_branches_2_0_conv1_0 = self.stage3_1_branches_2_0_conv1_0(stage3_0_relu_cbrs_2_0_2) stage3_1_branches_2_0_conv1_1 = self.stage3_1_branches_2_0_conv1_1(stage3_1_branches_2_0_conv1_0) stage3_1_branches_2_0_conv1_2 = self.stage3_1_branches_2_0_conv1_2(stage3_1_branches_2_0_conv1_1) stage3_1_branches_2_0_conv1_3 = self.stage3_1_branches_2_0_conv1_3(stage3_1_branches_2_0_conv1_2) stage3_1_branches_2_0_conv1_4 = self.stage3_1_branches_2_0_conv1_4(stage3_1_branches_2_0_conv1_3) add_19 = torch.add(stage3_1_branches_2_0_conv1_4, stage3_0_relu_cbrs_2_0_2) stage3_1_branches_2_1_0 = self.stage3_1_branches_2_1_0(add_19) stage3_1_branches_2_1_1 = self.stage3_1_branches_2_1_1(stage3_1_branches_2_1_0) stage3_1_branches_2_1_2 = self.stage3_1_branches_2_1_2(stage3_1_branches_2_1_1) stage3_1_fuse_layers_0_1_0 = self.stage3_1_fuse_layers_0_1_0(stage3_1_branches_1_1_2) stage3_1_fuse_layers_0_1_1 = self.stage3_1_fuse_layers_0_1_1(stage3_1_fuse_layers_0_1_0) stage3_1_fuse_layers_0_1_2 = self.stage3_1_fuse_layers_0_1_2(stage3_1_fuse_layers_0_1_1) add_20 = torch.add(stage3_1_branches_0_1_2, stage3_1_fuse_layers_0_1_2) stage3_1_fuse_layers_0_2_0 = self.stage3_1_fuse_layers_0_2_0(stage3_1_branches_2_1_2) stage3_1_fuse_layers_0_2_1 = self.stage3_1_fuse_layers_0_2_1(stage3_1_fuse_layers_0_2_0) stage3_1_fuse_layers_0_2_2 = self.stage3_1_fuse_layers_0_2_2(stage3_1_fuse_layers_0_2_1) add_21 = torch.add(add_20, stage3_1_fuse_layers_0_2_2) stage3_1_relu_cbrs_0_0_0 = self.stage3_1_relu_cbrs_0_0_0(add_21) stage3_1_relu_cbrs_0_0_1 = self.stage3_1_relu_cbrs_0_0_1(stage3_1_relu_cbrs_0_0_0) stage3_1_relu_cbrs_0_0_2 = self.stage3_1_relu_cbrs_0_0_2(stage3_1_relu_cbrs_0_0_1) stage3_1_fuse_layers_1_0_0_0_0 = self.stage3_1_fuse_layers_1_0_0_0_0(stage3_1_branches_0_1_2) stage3_1_fuse_layers_1_0_0_0_1 = self.stage3_1_fuse_layers_1_0_0_0_1(stage3_1_fuse_layers_1_0_0_0_0) stage3_1_fuse_layers_1_0_0_0_2 = self.stage3_1_fuse_layers_1_0_0_0_2(stage3_1_fuse_layers_1_0_0_0_1) stage3_1_fuse_layers_1_0_0_0_3 = self.stage3_1_fuse_layers_1_0_0_0_3(stage3_1_fuse_layers_1_0_0_0_2) stage3_1_fuse_layers_1_0_0_1 = self.stage3_1_fuse_layers_1_0_0_1(stage3_1_fuse_layers_1_0_0_0_3) add_22 = torch.add(stage3_1_fuse_layers_1_0_0_1, stage3_1_branches_1_1_2) stage3_1_fuse_layers_1_2_0 = self.stage3_1_fuse_layers_1_2_0(stage3_1_branches_2_1_2) stage3_1_fuse_layers_1_2_1 = self.stage3_1_fuse_layers_1_2_1(stage3_1_fuse_layers_1_2_0) stage3_1_fuse_layers_1_2_2 = self.stage3_1_fuse_layers_1_2_2(stage3_1_fuse_layers_1_2_1) add_23 = torch.add(add_22, stage3_1_fuse_layers_1_2_2) stage3_1_relu_cbrs_1_0_0 = self.stage3_1_relu_cbrs_1_0_0(add_23) stage3_1_relu_cbrs_1_0_1 = self.stage3_1_relu_cbrs_1_0_1(stage3_1_relu_cbrs_1_0_0) stage3_1_relu_cbrs_1_0_2 = self.stage3_1_relu_cbrs_1_0_2(stage3_1_relu_cbrs_1_0_1) stage3_1_fuse_layers_2_0_0_0_0 = self.stage3_1_fuse_layers_2_0_0_0_0(stage3_1_branches_0_1_2) stage3_1_fuse_layers_2_0_0_0_1 = self.stage3_1_fuse_layers_2_0_0_0_1(stage3_1_fuse_layers_2_0_0_0_0) stage3_1_fuse_layers_2_0_0_0_2 = self.stage3_1_fuse_layers_2_0_0_0_2(stage3_1_fuse_layers_2_0_0_0_1) stage3_1_fuse_layers_2_0_0_0_3 = self.stage3_1_fuse_layers_2_0_0_0_3(stage3_1_fuse_layers_2_0_0_0_2) stage3_1_fuse_layers_2_0_0_1 = self.stage3_1_fuse_layers_2_0_0_1(stage3_1_fuse_layers_2_0_0_0_3) stage3_1_fuse_layers_2_0_0_2 = self.stage3_1_fuse_layers_2_0_0_2(stage3_1_fuse_layers_2_0_0_1) stage3_1_fuse_layers_2_0_1_0_0 = self.stage3_1_fuse_layers_2_0_1_0_0(stage3_1_fuse_layers_2_0_0_2) stage3_1_fuse_layers_2_0_1_0_1 = self.stage3_1_fuse_layers_2_0_1_0_1(stage3_1_fuse_layers_2_0_1_0_0) stage3_1_fuse_layers_2_0_1_0_2 = self.stage3_1_fuse_layers_2_0_1_0_2(stage3_1_fuse_layers_2_0_1_0_1) stage3_1_fuse_layers_2_0_1_0_3 = self.stage3_1_fuse_layers_2_0_1_0_3(stage3_1_fuse_layers_2_0_1_0_2) stage3_1_fuse_layers_2_0_1_1 = self.stage3_1_fuse_layers_2_0_1_1(stage3_1_fuse_layers_2_0_1_0_3) stage3_1_fuse_layers_2_1_0_0_0 = self.stage3_1_fuse_layers_2_1_0_0_0(stage3_1_branches_1_1_2) stage3_1_fuse_layers_2_1_0_0_1 = self.stage3_1_fuse_layers_2_1_0_0_1(stage3_1_fuse_layers_2_1_0_0_0) stage3_1_fuse_layers_2_1_0_0_2 = self.stage3_1_fuse_layers_2_1_0_0_2(stage3_1_fuse_layers_2_1_0_0_1) stage3_1_fuse_layers_2_1_0_0_3 = self.stage3_1_fuse_layers_2_1_0_0_3(stage3_1_fuse_layers_2_1_0_0_2) stage3_1_fuse_layers_2_1_0_1 = self.stage3_1_fuse_layers_2_1_0_1(stage3_1_fuse_layers_2_1_0_0_3) add_24 = torch.add(stage3_1_fuse_layers_2_0_1_1, stage3_1_fuse_layers_2_1_0_1) add_25 = torch.add(add_24, stage3_1_branches_2_1_2) stage3_1_relu_cbrs_2_0_0 = self.stage3_1_relu_cbrs_2_0_0(add_25) stage3_1_relu_cbrs_2_0_1 = self.stage3_1_relu_cbrs_2_0_1(stage3_1_relu_cbrs_2_0_0) stage3_1_relu_cbrs_2_0_2 = self.stage3_1_relu_cbrs_2_0_2(stage3_1_relu_cbrs_2_0_1) stage3_2_branches_0_0_conv1_0 = self.stage3_2_branches_0_0_conv1_0(stage3_1_relu_cbrs_0_0_2) stage3_2_branches_0_0_conv1_1 = self.stage3_2_branches_0_0_conv1_1(stage3_2_branches_0_0_conv1_0) stage3_2_branches_0_0_conv1_2 = self.stage3_2_branches_0_0_conv1_2(stage3_2_branches_0_0_conv1_1) stage3_2_branches_0_0_conv1_3 = self.stage3_2_branches_0_0_conv1_3(stage3_2_branches_0_0_conv1_2) stage3_2_branches_0_0_conv1_4 = self.stage3_2_branches_0_0_conv1_4(stage3_2_branches_0_0_conv1_3) add_26 = torch.add(stage3_2_branches_0_0_conv1_4, stage3_1_relu_cbrs_0_0_2) stage3_2_branches_0_1_0 = self.stage3_2_branches_0_1_0(add_26) stage3_2_branches_0_1_1 = self.stage3_2_branches_0_1_1(stage3_2_branches_0_1_0) stage3_2_branches_0_1_2 = self.stage3_2_branches_0_1_2(stage3_2_branches_0_1_1) stage3_2_branches_1_0_conv1_0 = self.stage3_2_branches_1_0_conv1_0(stage3_1_relu_cbrs_1_0_2) stage3_2_branches_1_0_conv1_1 = self.stage3_2_branches_1_0_conv1_1(stage3_2_branches_1_0_conv1_0) stage3_2_branches_1_0_conv1_2 = self.stage3_2_branches_1_0_conv1_2(stage3_2_branches_1_0_conv1_1) stage3_2_branches_1_0_conv1_3 = self.stage3_2_branches_1_0_conv1_3(stage3_2_branches_1_0_conv1_2) stage3_2_branches_1_0_conv1_4 = self.stage3_2_branches_1_0_conv1_4(stage3_2_branches_1_0_conv1_3) add_27 = torch.add(stage3_2_branches_1_0_conv1_4, stage3_1_relu_cbrs_1_0_2) stage3_2_branches_1_1_0 = self.stage3_2_branches_1_1_0(add_27) stage3_2_branches_1_1_1 = self.stage3_2_branches_1_1_1(stage3_2_branches_1_1_0) stage3_2_branches_1_1_2 = self.stage3_2_branches_1_1_2(stage3_2_branches_1_1_1) stage3_2_branches_2_0_conv1_0 = self.stage3_2_branches_2_0_conv1_0(stage3_1_relu_cbrs_2_0_2) stage3_2_branches_2_0_conv1_1 = self.stage3_2_branches_2_0_conv1_1(stage3_2_branches_2_0_conv1_0) stage3_2_branches_2_0_conv1_2 = self.stage3_2_branches_2_0_conv1_2(stage3_2_branches_2_0_conv1_1) stage3_2_branches_2_0_conv1_3 = self.stage3_2_branches_2_0_conv1_3(stage3_2_branches_2_0_conv1_2) stage3_2_branches_2_0_conv1_4 = self.stage3_2_branches_2_0_conv1_4(stage3_2_branches_2_0_conv1_3) add_28 = torch.add(stage3_2_branches_2_0_conv1_4, stage3_1_relu_cbrs_2_0_2) stage3_2_branches_2_1_0 = self.stage3_2_branches_2_1_0(add_28) stage3_2_branches_2_1_1 = self.stage3_2_branches_2_1_1(stage3_2_branches_2_1_0) stage3_2_branches_2_1_2 = self.stage3_2_branches_2_1_2(stage3_2_branches_2_1_1) stage3_2_fuse_layers_0_1_0 = self.stage3_2_fuse_layers_0_1_0(stage3_2_branches_1_1_2) stage3_2_fuse_layers_0_1_1 = self.stage3_2_fuse_layers_0_1_1(stage3_2_fuse_layers_0_1_0) stage3_2_fuse_layers_0_1_2 = self.stage3_2_fuse_layers_0_1_2(stage3_2_fuse_layers_0_1_1) add_29 = torch.add(stage3_2_branches_0_1_2, stage3_2_fuse_layers_0_1_2) stage3_2_fuse_layers_0_2_0 = self.stage3_2_fuse_layers_0_2_0(stage3_2_branches_2_1_2) stage3_2_fuse_layers_0_2_1 = self.stage3_2_fuse_layers_0_2_1(stage3_2_fuse_layers_0_2_0) stage3_2_fuse_layers_0_2_2 = self.stage3_2_fuse_layers_0_2_2(stage3_2_fuse_layers_0_2_1) add_30 = torch.add(add_29, stage3_2_fuse_layers_0_2_2) stage3_2_relu_cbrs_0_0_0 = self.stage3_2_relu_cbrs_0_0_0(add_30) stage3_2_relu_cbrs_0_0_1 = self.stage3_2_relu_cbrs_0_0_1(stage3_2_relu_cbrs_0_0_0) stage3_2_relu_cbrs_0_0_2 = self.stage3_2_relu_cbrs_0_0_2(stage3_2_relu_cbrs_0_0_1) stage3_2_fuse_layers_1_0_0_0_0 = self.stage3_2_fuse_layers_1_0_0_0_0(stage3_2_branches_0_1_2) stage3_2_fuse_layers_1_0_0_0_1 = self.stage3_2_fuse_layers_1_0_0_0_1(stage3_2_fuse_layers_1_0_0_0_0) stage3_2_fuse_layers_1_0_0_0_2 = self.stage3_2_fuse_layers_1_0_0_0_2(stage3_2_fuse_layers_1_0_0_0_1) stage3_2_fuse_layers_1_0_0_0_3 = self.stage3_2_fuse_layers_1_0_0_0_3(stage3_2_fuse_layers_1_0_0_0_2) stage3_2_fuse_layers_1_0_0_1 = self.stage3_2_fuse_layers_1_0_0_1(stage3_2_fuse_layers_1_0_0_0_3) add_31 = torch.add(stage3_2_fuse_layers_1_0_0_1, stage3_2_branches_1_1_2) stage3_2_fuse_layers_1_2_0 = self.stage3_2_fuse_layers_1_2_0(stage3_2_branches_2_1_2) stage3_2_fuse_layers_1_2_1 = self.stage3_2_fuse_layers_1_2_1(stage3_2_fuse_layers_1_2_0) stage3_2_fuse_layers_1_2_2 = self.stage3_2_fuse_layers_1_2_2(stage3_2_fuse_layers_1_2_1) add_32 = torch.add(add_31, stage3_2_fuse_layers_1_2_2) stage3_2_relu_cbrs_1_0_0 = self.stage3_2_relu_cbrs_1_0_0(add_32) stage3_2_relu_cbrs_1_0_1 = self.stage3_2_relu_cbrs_1_0_1(stage3_2_relu_cbrs_1_0_0) stage3_2_relu_cbrs_1_0_2 = self.stage3_2_relu_cbrs_1_0_2(stage3_2_relu_cbrs_1_0_1) stage3_2_fuse_layers_2_0_0_0_0 = self.stage3_2_fuse_layers_2_0_0_0_0(stage3_2_branches_0_1_2) stage3_2_fuse_layers_2_0_0_0_1 = self.stage3_2_fuse_layers_2_0_0_0_1(stage3_2_fuse_layers_2_0_0_0_0) stage3_2_fuse_layers_2_0_0_0_2 = self.stage3_2_fuse_layers_2_0_0_0_2(stage3_2_fuse_layers_2_0_0_0_1) stage3_2_fuse_layers_2_0_0_0_3 = self.stage3_2_fuse_layers_2_0_0_0_3(stage3_2_fuse_layers_2_0_0_0_2) stage3_2_fuse_layers_2_0_0_1 = self.stage3_2_fuse_layers_2_0_0_1(stage3_2_fuse_layers_2_0_0_0_3) stage3_2_fuse_layers_2_0_0_2 = self.stage3_2_fuse_layers_2_0_0_2(stage3_2_fuse_layers_2_0_0_1) stage3_2_fuse_layers_2_0_1_0_0 = self.stage3_2_fuse_layers_2_0_1_0_0(stage3_2_fuse_layers_2_0_0_2) stage3_2_fuse_layers_2_0_1_0_1 = self.stage3_2_fuse_layers_2_0_1_0_1(stage3_2_fuse_layers_2_0_1_0_0) stage3_2_fuse_layers_2_0_1_0_2 = self.stage3_2_fuse_layers_2_0_1_0_2(stage3_2_fuse_layers_2_0_1_0_1) stage3_2_fuse_layers_2_0_1_0_3 = self.stage3_2_fuse_layers_2_0_1_0_3(stage3_2_fuse_layers_2_0_1_0_2) stage3_2_fuse_layers_2_0_1_1 = self.stage3_2_fuse_layers_2_0_1_1(stage3_2_fuse_layers_2_0_1_0_3) stage3_2_fuse_layers_2_1_0_0_0 = self.stage3_2_fuse_layers_2_1_0_0_0(stage3_2_branches_1_1_2) stage3_2_fuse_layers_2_1_0_0_1 = self.stage3_2_fuse_layers_2_1_0_0_1(stage3_2_fuse_layers_2_1_0_0_0) stage3_2_fuse_layers_2_1_0_0_2 = self.stage3_2_fuse_layers_2_1_0_0_2(stage3_2_fuse_layers_2_1_0_0_1) stage3_2_fuse_layers_2_1_0_0_3 = self.stage3_2_fuse_layers_2_1_0_0_3(stage3_2_fuse_layers_2_1_0_0_2) stage3_2_fuse_layers_2_1_0_1 = self.stage3_2_fuse_layers_2_1_0_1(stage3_2_fuse_layers_2_1_0_0_3) add_33 = torch.add(stage3_2_fuse_layers_2_0_1_1, stage3_2_fuse_layers_2_1_0_1) add_34 = torch.add(add_33, stage3_2_branches_2_1_2) stage3_2_relu_cbrs_2_0_0 = self.stage3_2_relu_cbrs_2_0_0(add_34) stage3_2_relu_cbrs_2_0_1 = self.stage3_2_relu_cbrs_2_0_1(stage3_2_relu_cbrs_2_0_0) stage3_2_relu_cbrs_2_0_2 = self.stage3_2_relu_cbrs_2_0_2(stage3_2_relu_cbrs_2_0_1) stage3_3_branches_0_0_conv1_0 = self.stage3_3_branches_0_0_conv1_0(stage3_2_relu_cbrs_0_0_2) stage3_3_branches_0_0_conv1_1 = self.stage3_3_branches_0_0_conv1_1(stage3_3_branches_0_0_conv1_0) stage3_3_branches_0_0_conv1_2 = self.stage3_3_branches_0_0_conv1_2(stage3_3_branches_0_0_conv1_1) stage3_3_branches_0_0_conv1_3 = self.stage3_3_branches_0_0_conv1_3(stage3_3_branches_0_0_conv1_2) stage3_3_branches_0_0_conv1_4 = self.stage3_3_branches_0_0_conv1_4(stage3_3_branches_0_0_conv1_3) add_35 = torch.add(stage3_3_branches_0_0_conv1_4, stage3_2_relu_cbrs_0_0_2) stage3_3_branches_0_1_0 = self.stage3_3_branches_0_1_0(add_35) stage3_3_branches_0_1_1 = self.stage3_3_branches_0_1_1(stage3_3_branches_0_1_0) stage3_3_branches_0_1_2 = self.stage3_3_branches_0_1_2(stage3_3_branches_0_1_1) stage3_3_branches_1_0_conv1_0 = self.stage3_3_branches_1_0_conv1_0(stage3_2_relu_cbrs_1_0_2) stage3_3_branches_1_0_conv1_1 = self.stage3_3_branches_1_0_conv1_1(stage3_3_branches_1_0_conv1_0) stage3_3_branches_1_0_conv1_2 = self.stage3_3_branches_1_0_conv1_2(stage3_3_branches_1_0_conv1_1) stage3_3_branches_1_0_conv1_3 = self.stage3_3_branches_1_0_conv1_3(stage3_3_branches_1_0_conv1_2) stage3_3_branches_1_0_conv1_4 = self.stage3_3_branches_1_0_conv1_4(stage3_3_branches_1_0_conv1_3) add_36 = torch.add(stage3_3_branches_1_0_conv1_4, stage3_2_relu_cbrs_1_0_2) stage3_3_branches_1_1_0 = self.stage3_3_branches_1_1_0(add_36) stage3_3_branches_1_1_1 = self.stage3_3_branches_1_1_1(stage3_3_branches_1_1_0) stage3_3_branches_1_1_2 = self.stage3_3_branches_1_1_2(stage3_3_branches_1_1_1) stage3_3_branches_2_0_conv1_0 = self.stage3_3_branches_2_0_conv1_0(stage3_2_relu_cbrs_2_0_2) stage3_3_branches_2_0_conv1_1 = self.stage3_3_branches_2_0_conv1_1(stage3_3_branches_2_0_conv1_0) stage3_3_branches_2_0_conv1_2 = self.stage3_3_branches_2_0_conv1_2(stage3_3_branches_2_0_conv1_1) stage3_3_branches_2_0_conv1_3 = self.stage3_3_branches_2_0_conv1_3(stage3_3_branches_2_0_conv1_2) stage3_3_branches_2_0_conv1_4 = self.stage3_3_branches_2_0_conv1_4(stage3_3_branches_2_0_conv1_3) add_37 = torch.add(stage3_3_branches_2_0_conv1_4, stage3_2_relu_cbrs_2_0_2) stage3_3_branches_2_1_0 = self.stage3_3_branches_2_1_0(add_37) stage3_3_branches_2_1_1 = self.stage3_3_branches_2_1_1(stage3_3_branches_2_1_0) stage3_3_branches_2_1_2 = self.stage3_3_branches_2_1_2(stage3_3_branches_2_1_1) stage3_3_fuse_layers_0_1_0 = self.stage3_3_fuse_layers_0_1_0(stage3_3_branches_1_1_2) stage3_3_fuse_layers_0_1_1 = self.stage3_3_fuse_layers_0_1_1(stage3_3_fuse_layers_0_1_0) stage3_3_fuse_layers_0_1_2 = self.stage3_3_fuse_layers_0_1_2(stage3_3_fuse_layers_0_1_1) add_38 = torch.add(stage3_3_branches_0_1_2, stage3_3_fuse_layers_0_1_2) stage3_3_fuse_layers_0_2_0 = self.stage3_3_fuse_layers_0_2_0(stage3_3_branches_2_1_2) stage3_3_fuse_layers_0_2_1 = self.stage3_3_fuse_layers_0_2_1(stage3_3_fuse_layers_0_2_0) stage3_3_fuse_layers_0_2_2 = self.stage3_3_fuse_layers_0_2_2(stage3_3_fuse_layers_0_2_1) add_39 = torch.add(add_38, stage3_3_fuse_layers_0_2_2) stage3_3_relu_cbrs_0_0_0 = self.stage3_3_relu_cbrs_0_0_0(add_39) stage3_3_relu_cbrs_0_0_1 = self.stage3_3_relu_cbrs_0_0_1(stage3_3_relu_cbrs_0_0_0) stage3_3_relu_cbrs_0_0_2 = self.stage3_3_relu_cbrs_0_0_2(stage3_3_relu_cbrs_0_0_1) final_layers_0 = self.final_layers_0(stage3_3_relu_cbrs_0_0_2) cat_1 = torch.cat([stage3_3_relu_cbrs_0_0_2, final_layers_0], 1) deconv_layers_0_0_0 = self.deconv_layers_0_0_0(cat_1) deconv_layers_0_0_1 = self.deconv_layers_0_0_1(deconv_layers_0_0_0) deconv_layers_0_0_2 = self.deconv_layers_0_0_2(deconv_layers_0_0_1) deconv_layers_0_0_3 = self.deconv_layers_0_0_3(deconv_layers_0_0_2) deconv_layers_0_1_0_conv1_0 = self.deconv_layers_0_1_0_conv1_0(deconv_layers_0_0_3) deconv_layers_0_1_0_conv1_1 = self.deconv_layers_0_1_0_conv1_1(deconv_layers_0_1_0_conv1_0) deconv_layers_0_1_0_conv1_2 = self.deconv_layers_0_1_0_conv1_2(deconv_layers_0_1_0_conv1_1) deconv_layers_0_1_0_conv1_3 = self.deconv_layers_0_1_0_conv1_3(deconv_layers_0_1_0_conv1_2) deconv_layers_0_1_0_conv1_4 = self.deconv_layers_0_1_0_conv1_4(deconv_layers_0_1_0_conv1_3) deconv_layers_0_1_0_relu1 = self.deconv_layers_0_1_0_relu1(deconv_layers_0_1_0_conv1_4) deconv_layers_0_1_0_conv2_0 = self.deconv_layers_0_1_0_conv2_0(deconv_layers_0_1_0_relu1) deconv_layers_0_1_0_conv2_1 = self.deconv_layers_0_1_0_conv2_1(deconv_layers_0_1_0_conv2_0) deconv_layers_0_1_0_conv2_2 = self.deconv_layers_0_1_0_conv2_2(deconv_layers_0_1_0_conv2_1) deconv_layers_0_1_0_conv2_3 = self.deconv_layers_0_1_0_conv2_3(deconv_layers_0_1_0_conv2_2) deconv_layers_0_1_0_conv2_4 = self.deconv_layers_0_1_0_conv2_4(deconv_layers_0_1_0_conv2_3) add_40 = torch.add(deconv_layers_0_1_0_conv2_4, deconv_layers_0_0_3) final_layers_1 = self.final_layers_1(add_40) return final_layers_0, final_layers_1 if __name__ == "__main__": model = hrnet125() model.eval() model.cpu() dummy_input_0 = torch.ones((1, 3, 224, 224), dtype=torch.float32) output = model(dummy_input_0) print(output)