tinynn/converter/schemas/torch/aten_schema.py (4,261 lines of code) (raw):
from abc import abstractmethod
from ...operators.torch.base import OperatorConverter
class ATenAbsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::abs(Tensor self) -> (Tensor)'''
pass
class ATenAbsoluteSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::absolute(Tensor self) -> (Tensor)'''
pass
class ATenAcosSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::acos(Tensor self) -> (Tensor)'''
pass
class ATenAcoshSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::acosh(Tensor self) -> (Tensor)'''
pass
class ATenAdaptiveAvgPool1dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::adaptive_avg_pool1d(Tensor self, int[1] output_size) -> (Tensor)'''
pass
class ATenAdaptiveAvgPool2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_adaptive_avg_pool2d(Tensor self, int[2] output_size) -> (Tensor)
aten::adaptive_avg_pool2d(Tensor self, int[2] output_size) -> (Tensor)'''
pass
class ATenAdaptiveAvgPool3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_adaptive_avg_pool3d(Tensor self, int[3] output_size) -> (Tensor)
aten::adaptive_avg_pool3d(Tensor self, int[3] output_size) -> (Tensor)'''
pass
class ATenAdaptiveMaxPool1dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::adaptive_max_pool1d(Tensor self, int[1] output_size) -> (Tensor, Tensor)'''
pass
class ATenAdaptiveMaxPool2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::adaptive_max_pool2d(Tensor self, int[2] output_size) -> (Tensor, Tensor)
aten::adaptive_max_pool2d.out(Tensor self, int[2] output_size, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))'''
pass
class ATenAdaptiveMaxPool3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::adaptive_max_pool3d(Tensor self, int[3] output_size) -> (Tensor, Tensor)
aten::adaptive_max_pool3d.out(Tensor self, int[3] output_size, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))'''
pass
class ATenAddSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> (Tensor)
aten::add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor)'''
pass
class ATenAddBatchDimSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_add_batch_dim(Tensor self, int batch_dim, int level) -> (Tensor)'''
pass
class ATenAddReluSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_add_relu.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> (Tensor)
aten::_add_relu.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor)'''
pass
class ATenAddbmmSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::addbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> (Tensor)'''
pass
class ATenAddcdivSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::addcdiv(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> (Tensor)'''
pass
class ATenAddcmulSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::addcmul(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> (Tensor)'''
pass
class ATenAddmmSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> (Tensor)'''
pass
class ATenAddmmActivationSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_addmm_activation(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, bool use_gelu=False) -> (Tensor)'''
pass
class ATenAddmvSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::addmv(Tensor self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) -> (Tensor)'''
pass
class ATenAddrSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::addr(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> (Tensor)'''
pass
class ATenAdjointSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::adjoint(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenAffineGridGeneratorSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::affine_grid_generator(Tensor theta, int[] size, bool align_corners) -> (Tensor)'''
pass
class ATenAliasSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::alias(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenAliasCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::alias_copy(Tensor self) -> (Tensor)'''
pass
class ATenAlignAsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::align_as(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenAlignTensorsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::align_tensors(Tensor[] tensors) -> (Tensor[])'''
pass
class ATenAlignToSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::align_to(Tensor(a) self, str[] names) -> (Tensor(a))
aten::align_to.ellipsis_idx(Tensor(a) self, str[] order, int ellipsis_idx) -> (Tensor(a))'''
pass
class ATenAllSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::all(Tensor self) -> (Tensor)
aten::all.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor)
aten::all.dimname(Tensor self, str dim, bool keepdim=False) -> (Tensor)'''
pass
class ATenAlphaDropoutSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::alpha_dropout(Tensor input, float p, bool train) -> (Tensor)'''
pass
class ATenAmaxSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::amax(Tensor self, int[1] dim=[], bool keepdim=False) -> (Tensor)'''
pass
class ATenAminSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::amin(Tensor self, int[1] dim=[], bool keepdim=False) -> (Tensor)'''
pass
class ATenAminmaxSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_aminmax(Tensor self) -> (Tensor, Tensor)
aten::_aminmax.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor, Tensor)
aten::aminmax(Tensor self, *, int? dim=None, bool keepdim=False) -> (Tensor min, Tensor max)
aten::aminmax.out(Tensor self, *, int? dim=None, bool keepdim=False, Tensor(a!) min, Tensor(b!) max) -> (Tensor(a!) min, Tensor(b!) max)'''
pass
class ATenAmpForeachNonFiniteCheckAndUnscaleSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_amp_foreach_non_finite_check_and_unscale.functional(Tensor[] self, Tensor found_inf, Tensor inv_scale) -> (Tensor[] self_out, Tensor found_inf_out)'''
pass
class ATenAmpUpdateScaleSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_amp_update_scale.functional(Tensor self, Tensor growth_tracker, Tensor found_inf, float scale_growth_factor, float scale_backoff_factor, int growth_interval) -> (Tensor, Tensor growth_tracker_out)'''
pass
class ATenAndSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::__and__.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::__and__.Tensor(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenAngleSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::angle(Tensor self) -> (Tensor)'''
pass
class ATenAnySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::any(Tensor self) -> (Tensor)
aten::any.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor)
aten::any.dimname(Tensor self, str dim, bool keepdim=False) -> (Tensor)'''
pass
class ATenArccosSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::arccos(Tensor self) -> (Tensor)'''
pass
class ATenArccoshSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::arccosh(Tensor self) -> (Tensor)'''
pass
class ATenArcsinSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::arcsin(Tensor self) -> (Tensor)'''
pass
class ATenArcsinhSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::arcsinh(Tensor self) -> (Tensor)'''
pass
class ATenArctanSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::arctan(Tensor self) -> (Tensor)'''
pass
class ATenArctan2Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::arctan2(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenArctanhSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::arctanh(Tensor self) -> (Tensor)'''
pass
class ATenArgmaxSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::argmax(Tensor self, int? dim=None, bool keepdim=False) -> (Tensor)'''
pass
class ATenArgminSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::argmin(Tensor self, int? dim=None, bool keepdim=False) -> (Tensor)'''
pass
class ATenArgsortSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::argsort(Tensor self, int dim=-1, bool descending=False) -> (Tensor)
aten::argsort.dimname(Tensor self, str dim, bool descending=False) -> (Tensor)'''
pass
class ATenArgwhereSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::argwhere(Tensor self) -> (Tensor)'''
pass
class ATenAsStridedSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::as_strided(Tensor(a) self, int[] size, int[] stride, int? storage_offset=None) -> (Tensor(a))'''
pass
class ATenAsStridedCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::as_strided_copy(Tensor self, int[] size, int[] stride, int? storage_offset=None) -> (Tensor)'''
pass
class ATenAsTensorSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::as_tensor(Tensor(a) data, *, int? dtype=None, Device? device=None) -> (Tensor(b|a))'''
pass
class ATenAsinSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::asin(Tensor self) -> (Tensor)'''
pass
class ATenAsinhSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::asinh(Tensor self) -> (Tensor)'''
pass
class ATenAtanSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::atan(Tensor self) -> (Tensor)'''
pass
class ATenAtan2Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::atan2(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenAtanhSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::atanh(Tensor self) -> (Tensor)'''
pass
class ATenAtleast1dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::atleast_1d(Tensor self) -> (Tensor)
aten::atleast_1d.Sequence(Tensor[] tensors) -> (Tensor[])'''
pass
class ATenAtleast2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::atleast_2d(Tensor self) -> (Tensor)
aten::atleast_2d.Sequence(Tensor[] tensors) -> (Tensor[])'''
pass
class ATenAtleast3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::atleast_3d(Tensor self) -> (Tensor)
aten::atleast_3d.Sequence(Tensor[] tensors) -> (Tensor[])'''
pass
class ATenAutocastToFullPrecisionSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_autocast_to_full_precision(Tensor(a) self, bool cuda_enabled, bool cpu_enabled) -> (Tensor(a))'''
pass
class ATenAutocastToReducedPrecisionSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_autocast_to_reduced_precision(Tensor(a) self, bool cuda_enabled, bool cpu_enabled, int cuda_dtype, int cpu_dtype) -> (Tensor(a))'''
pass
class ATenAvgPool1dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::avg_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=[0], bool ceil_mode=False, bool count_include_pad=True) -> (Tensor)'''
pass
class ATenAvgPool2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::avg_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> (Tensor)'''
pass
class ATenAvgPool3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::avg_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=[0, 0, 0], bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> (Tensor)'''
pass
class ATenBaddbmmSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::baddbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> (Tensor)'''
pass
class ATenBatchNormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor)'''
pass
class ATenBatchNormBackwardElemtSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::batch_norm_backward_elemt(Tensor grad_out, Tensor input, Tensor mean, Tensor invstd, Tensor? weight, Tensor mean_dy, Tensor mean_dy_xmu, Tensor count) -> (Tensor)'''
pass
class ATenBatchNormBackwardReduceSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::batch_norm_backward_reduce(Tensor grad_out, Tensor input, Tensor mean, Tensor invstd, Tensor? weight, bool input_g, bool weight_g, bool bias_g) -> (Tensor, Tensor, Tensor, Tensor)'''
pass
class ATenBatchNormElemtSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::batch_norm_elemt(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor invstd, float eps) -> (Tensor)'''
pass
class ATenBatchNormGatherStatsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::batch_norm_gather_stats(Tensor input, Tensor mean, Tensor invstd, Tensor? running_mean, Tensor? running_var, float momentum, float eps, int count) -> (Tensor, Tensor)'''
pass
class ATenBatchNormGatherStatsWithCountsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::batch_norm_gather_stats_with_counts(Tensor input, Tensor mean, Tensor invstd, Tensor? running_mean, Tensor? running_var, float momentum, float eps, Tensor counts) -> (Tensor, Tensor)'''
pass
class ATenBatchNormImplIndexSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_batch_norm_impl_index(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor, Tensor, Tensor, Tensor, int)'''
pass
class ATenBatchNormStatsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::batch_norm_stats(Tensor input, float eps) -> (Tensor, Tensor)'''
pass
class ATenBatchNormUpdateStatsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::batch_norm_update_stats(Tensor input, Tensor? running_mean, Tensor? running_var, float momentum) -> (Tensor, Tensor)'''
pass
class ATenBernoulliSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bernoulli(Tensor self, *, Generator? generator=None) -> (Tensor)
aten::bernoulli.p(Tensor self, float p, *, Generator? generator=None) -> (Tensor)
aten::bernoulli.Tensor_functional(Tensor self, Tensor p, *, Generator? generator=None) -> (Tensor)'''
pass
class ATenBilinearSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bilinear(Tensor input1, Tensor input2, Tensor weight, Tensor? bias=None) -> (Tensor)'''
pass
class ATenBinaryCrossEntropySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::binary_cross_entropy(Tensor self, Tensor target, Tensor? weight=None, int reduction=1) -> (Tensor)'''
pass
class ATenBinaryCrossEntropyWithLogitsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::binary_cross_entropy_with_logits(Tensor self, Tensor target, Tensor? weight=None, Tensor? pos_weight=None, int reduction=1) -> (Tensor)'''
pass
class ATenBincountSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bincount(Tensor self, Tensor? weights=None, int minlength=0) -> (Tensor)'''
pass
class ATenBinomialSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::binomial(Tensor count, Tensor prob, Generator? generator=None) -> (Tensor)'''
pass
class ATenBitwiseAndSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bitwise_and.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::bitwise_and.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::bitwise_and.Scalar_Tensor(Scalar self, Tensor other) -> (Tensor)'''
pass
class ATenBitwiseLeftShiftSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bitwise_left_shift.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::bitwise_left_shift.Tensor_Scalar(Tensor self, Scalar other) -> (Tensor)
aten::bitwise_left_shift.Scalar_Tensor(Scalar self, Tensor other) -> (Tensor)'''
pass
class ATenBitwiseNotSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bitwise_not(Tensor self) -> (Tensor)'''
pass
class ATenBitwiseOrSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bitwise_or.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::bitwise_or.Scalar_Tensor(Scalar self, Tensor other) -> (Tensor)
aten::bitwise_or.Scalar(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenBitwiseRightShiftSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bitwise_right_shift.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::bitwise_right_shift.Tensor_Scalar(Tensor self, Scalar other) -> (Tensor)
aten::bitwise_right_shift.Scalar_Tensor(Scalar self, Tensor other) -> (Tensor)'''
pass
class ATenBitwiseXorSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bitwise_xor.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::bitwise_xor.Scalar_Tensor(Scalar self, Tensor other) -> (Tensor)
aten::bitwise_xor.Scalar(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenBlockDiagSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::block_diag(Tensor[] tensors) -> (Tensor)'''
pass
class ATenBmmSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bmm(Tensor self, Tensor mat2) -> (Tensor)'''
pass
class ATenBroadcastTensorsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::broadcast_tensors(Tensor[] tensors) -> (Tensor[])'''
pass
class ATenBroadcastToSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::broadcast_to(Tensor(a) self, int[] size) -> (Tensor(a))'''
pass
class ATenBucketizeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bucketize.Tensor(Tensor self, Tensor boundaries, *, bool out_int32=False, bool right=False) -> (Tensor)
aten::bucketize.Scalar(Scalar self, Tensor boundaries, *, bool out_int32=False, bool right=False) -> (Tensor)'''
pass
class ATenCartesianProdSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cartesian_prod(Tensor[] tensors) -> (Tensor)'''
pass
class ATenCatSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cat(Tensor[] tensors, int dim=0) -> (Tensor)
aten::cat.names(Tensor[] tensors, str dim) -> (Tensor)'''
pass
class ATenCauchySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cauchy.functional(Tensor self, float median=0., float sigma=1., *, Generator? generator=None) -> (Tensor)'''
pass
class ATenCcolIndicesSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::ccol_indices(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenCcolIndicesCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::ccol_indices_copy(Tensor self) -> (Tensor)'''
pass
class ATenCdistSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cdist(Tensor x1, Tensor x2, float p=2., int? compute_mode=None) -> (Tensor)'''
pass
class ATenCeilSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::ceil(Tensor self) -> (Tensor)'''
pass
class ATenCeluSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::celu(Tensor self, Scalar alpha=1.) -> (Tensor)'''
pass
class ATenChainMatmulSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::chain_matmul(Tensor[] matrices) -> (Tensor)'''
pass
class ATenChalfSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::chalf(Tensor self, *, int? memory_format=None) -> (Tensor)'''
pass
class ATenChannelShuffleSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::channel_shuffle(Tensor self, int groups) -> (Tensor)'''
pass
class ATenCholeskySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cholesky(Tensor self, bool upper=False) -> (Tensor)'''
pass
class ATenCholeskyInverseSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cholesky_inverse(Tensor self, bool upper=False) -> (Tensor)'''
pass
class ATenCholeskySolveSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cholesky_solve(Tensor self, Tensor input2, bool upper=False) -> (Tensor)'''
pass
class ATenCholeskySolveHelperSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_cholesky_solve_helper(Tensor self, Tensor A, bool upper) -> (Tensor)'''
pass
class ATenChooseQparamsOptimizedSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::choose_qparams_optimized(Tensor input, int numel, int n_bins, float ratio, int bit_width) -> (Tensor, Tensor)'''
pass
class ATenChunkSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::chunk(Tensor(a -> *) self, int chunks, int dim=0) -> (Tensor[])'''
pass
class ATenClampSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> (Tensor)
aten::clamp.Tensor(Tensor self, Tensor? min=None, Tensor? max=None) -> (Tensor)'''
pass
class ATenClampMaxSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::clamp_max(Tensor self, Scalar max) -> (Tensor)
aten::clamp_max.Tensor(Tensor self, Tensor max) -> (Tensor)'''
pass
class ATenClampMinSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::clamp_min(Tensor self, Scalar min) -> (Tensor)
aten::clamp_min.Tensor(Tensor self, Tensor min) -> (Tensor)'''
pass
class ATenClipSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::clip(Tensor self, Scalar? min=None, Scalar? max=None) -> (Tensor)
aten::clip.Tensor(Tensor self, Tensor? min=None, Tensor? max=None) -> (Tensor)'''
pass
class ATenCloneSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::clone(Tensor self, *, int? memory_format=None) -> (Tensor)'''
pass
class ATenCoalesceSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_coalesce(Tensor self) -> (Tensor)
aten::coalesce(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenCoalescedSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_coalesced.functional(Tensor self, bool coalesced) -> (Tensor)'''
pass
class ATenCol2imSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::col2im(Tensor self, int[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> (Tensor)'''
pass
class ATenColIndicesSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::col_indices(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenColIndicesCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::col_indices_copy(Tensor self) -> (Tensor)'''
pass
class ATenColumnStackSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::column_stack(Tensor[] tensors) -> (Tensor)'''
pass
class ATenCombinationsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::combinations(Tensor self, int r=2, bool with_replacement=False) -> (Tensor)'''
pass
class ATenComplexSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::complex(Tensor real, Tensor imag) -> (Tensor)'''
pass
class ATenComputeLinearCombinationSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_compute_linear_combination(Tensor input, Tensor coefficients) -> (Tensor)'''
pass
class ATenConcatSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::concat(Tensor[] tensors, int dim=0) -> (Tensor)
aten::concat.names(Tensor[] tensors, str dim) -> (Tensor)'''
pass
class ATenConjSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::conj(Tensor(a) self) -> (Tensor(a))
aten::_conj(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenConjCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_conj_copy(Tensor self) -> (Tensor)'''
pass
class ATenConjPhysicalSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::conj_physical(Tensor self) -> (Tensor)
aten::_conj_physical(Tensor self) -> (Tensor)'''
pass
class ATenConstantPadNdSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::constant_pad_nd(Tensor self, int[] pad, Scalar value=0) -> (Tensor)'''
pass
class ATenContiguousSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::contiguous(Tensor(a) self, *, int memory_format=0) -> (Tensor(a))'''
pass
class ATenConv1dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::conv1d(Tensor input, Tensor weight, Tensor? bias=None, int[1] stride=[1], int[1] padding=[0], int[1] dilation=[1], int groups=1) -> (Tensor)
aten::conv1d.padding(Tensor input, Tensor weight, Tensor? bias=None, int[1] stride=[1], str padding="valid", int[1] dilation=[1], int groups=1) -> (Tensor)'''
pass
class ATenConv2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::conv2d(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=[1, 1], int[2] padding=[0, 0], int[2] dilation=[1, 1], int groups=1) -> (Tensor)
aten::conv2d.padding(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=[1, 1], str padding="valid", int[2] dilation=[1, 1], int groups=1) -> (Tensor)'''
pass
class ATenConv3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::conv3d(Tensor input, Tensor weight, Tensor? bias=None, int[3] stride=[1, 1, 1], int[3] padding=[0, 0, 0], int[3] dilation=[1, 1, 1], int groups=1) -> (Tensor)
aten::conv3d.padding(Tensor input, Tensor weight, Tensor? bias=None, int[3] stride=[1, 1, 1], str padding="valid", int[3] dilation=[1, 1, 1], int groups=1) -> (Tensor)'''
pass
class ATenConvDepthwise2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_conv_depthwise2d(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias, int[2] stride, int[2] padding, int[2] dilation) -> (Tensor)'''
pass
class ATenConvDepthwise3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::conv_depthwise3d(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias, int[3] stride, int[3] padding, int[3] dilation) -> (Tensor)'''
pass
class ATenConvTbcSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::conv_tbc(Tensor self, Tensor weight, Tensor bias, int pad=0) -> (Tensor)'''
pass
class ATenConvTranspose1dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::conv_transpose1d(Tensor input, Tensor weight, Tensor? bias=None, int[1] stride=[1], int[1] padding=[0], int[1] output_padding=[0], int groups=1, int[1] dilation=[1]) -> (Tensor)'''
pass
class ATenConvTranspose2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::conv_transpose2d.input(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=[1, 1], int[2] padding=[0, 0], int[2] output_padding=[0, 0], int groups=1, int[2] dilation=[1, 1]) -> (Tensor)'''
pass
class ATenConvTranspose3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::conv_transpose3d.input(Tensor input, Tensor weight, Tensor? bias=None, int[3] stride=[1, 1, 1], int[3] padding=[0, 0, 0], int[3] output_padding=[0, 0, 0], int groups=1, int[3] dilation=[1, 1, 1]) -> (Tensor)'''
pass
class ATenConvertIndicesFromCooToCsrSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_convert_indices_from_coo_to_csr(Tensor self, int size, *, bool out_int32=False) -> (Tensor)'''
pass
class ATenConvertIndicesFromCsrToCooSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_convert_indices_from_csr_to_coo(Tensor crow_indices, Tensor col_indices, *, bool out_int32=False, bool transpose=False) -> (Tensor)'''
pass
class ATenConvolutionSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_convolution.deprecated(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool benchmark, bool deterministic, bool cudnn_enabled) -> (Tensor)
aten::_convolution(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) -> (Tensor)
aten::convolution(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups) -> (Tensor)'''
pass
class ATenConvolutionBackwardOverrideableSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::convolution_backward_overrideable(Tensor grad_output, Tensor input, Tensor weight, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)'''
pass
class ATenConvolutionModeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_convolution_mode(Tensor input, Tensor weight, Tensor? bias, int[] stride, str padding, int[] dilation, int groups) -> (Tensor)'''
pass
class ATenConvolutionOverrideableSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::convolution_overrideable(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups) -> (Tensor)'''
pass
class ATenCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::copy(Tensor self, Tensor src, bool non_blocking=False) -> (Tensor)
aten::copy.out(Tensor self, Tensor src, bool non_blocking=False, *, Tensor(a!) out) -> (Tensor(a!))
aten::copy_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> (Tensor(a!))
aten::copy_.Tensor(Tensor(a!) self, Tensor other) -> (Tensor(a!))
aten::copy_.int(Tensor(a!) self, int other) -> (Tensor(a!))
aten::copy_.float(Tensor(a!) self, float other) -> (Tensor(a!))'''
pass
class ATenCopyFromSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_copy_from(Tensor self, Tensor dst, bool non_blocking=False) -> (Tensor)'''
pass
class ATenCopyFromAndResizeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_copy_from_and_resize(Tensor self, Tensor dst) -> (Tensor)'''
pass
class ATenCopysignSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::copysign.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::copysign.Scalar(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenCorrcoefSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::corrcoef(Tensor self) -> (Tensor)'''
pass
class ATenCosSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cos(Tensor self) -> (Tensor)'''
pass
class ATenCoshSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cosh(Tensor self) -> (Tensor)'''
pass
class ATenCosineEmbeddingLossSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cosine_embedding_loss(Tensor input1, Tensor input2, Tensor target, float margin=0., int reduction=1) -> (Tensor)'''
pass
class ATenCosineSimilaritySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cosine_similarity(Tensor x1, Tensor x2, int dim=1, float eps=1e-08) -> (Tensor)'''
pass
class ATenCountNonzeroSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::count_nonzero.dim_IntList(Tensor self, int[] dim) -> (Tensor)
aten::count_nonzero(Tensor self, int? dim=None) -> (Tensor)'''
pass
class ATenCovSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cov(Tensor self, *, int correction=1, Tensor? fweights=None, Tensor? aweights=None) -> (Tensor)'''
pass
class ATenCpuSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cpu(Tensor(a) self) -> (Tensor(b|a))'''
pass
class ATenCrossSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cross(Tensor self, Tensor other, int? dim=None) -> (Tensor)'''
pass
class ATenCrossEntropyLossSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cross_entropy_loss(Tensor self, Tensor target, Tensor? weight=None, int reduction=1, int ignore_index=-100, float label_smoothing=0.) -> (Tensor)'''
pass
class ATenCrowIndicesSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::crow_indices(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenCrowIndicesCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::crow_indices_copy(Tensor self) -> (Tensor)'''
pass
class ATenCtcLossSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::ctc_loss.IntList(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, int reduction=1, bool zero_infinity=False) -> (Tensor)
aten::ctc_loss.Tensor(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank=0, int reduction=1, bool zero_infinity=False) -> (Tensor)
aten::_ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, bool zero_infinity=False) -> (Tensor, Tensor)'''
pass
class ATenCummaxSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cummax(Tensor self, int dim) -> (Tensor values, Tensor indices)
aten::cummax.dimname(Tensor self, str dim) -> (Tensor values, Tensor indices)
aten::cummax.out(Tensor self, int dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)'''
pass
class ATenCumminSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cummin(Tensor self, int dim) -> (Tensor values, Tensor indices)
aten::cummin.dimname(Tensor self, str dim) -> (Tensor values, Tensor indices)
aten::cummin.out(Tensor self, int dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)'''
pass
class ATenCumprodSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cumprod(Tensor self, int dim, *, int? dtype=None) -> (Tensor)
aten::cumprod.dimname(Tensor self, str dim, *, int? dtype=None) -> (Tensor)'''
pass
class ATenCumsumSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cumsum(Tensor self, int dim, *, int? dtype=None) -> (Tensor)
aten::cumsum.dimname(Tensor self, str dim, *, int? dtype=None) -> (Tensor)'''
pass
class ATenCumulativeTrapezoidSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cumulative_trapezoid.x(Tensor y, Tensor x, *, int dim=-1) -> (Tensor)
aten::cumulative_trapezoid.dx(Tensor y, *, Scalar dx=1, int dim=-1) -> (Tensor)'''
pass
class ATenDataSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::data(Tensor self) -> (Tensor)'''
pass
class ATenDeg2radSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::deg2rad(Tensor self) -> (Tensor)'''
pass
class ATenDequantizeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::dequantize.self(Tensor self) -> (Tensor)
aten::dequantize.tensors(Tensor[] tensors) -> (Tensor[])
aten::dequantize.tensor(Tensor qtensor) -> (Tensor)
aten::dequantize.list(Tensor[] qtensors) -> (Tensor[])'''
pass
class ATenDetSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::det(Tensor self) -> (Tensor)'''
pass
class ATenDetLuBasedHelperSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_det_lu_based_helper(Tensor self) -> (Tensor det, Tensor lu, Tensor pivs)'''
pass
class ATenDetLuBasedHelperBackwardHelperSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_det_lu_based_helper_backward_helper(Tensor det_grad, Tensor det, Tensor self, Tensor lu, Tensor pivs) -> (Tensor)'''
pass
class ATenDetachSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::detach(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenDetachCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::detach_copy(Tensor self) -> (Tensor)'''
pass
class ATenDiagSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::diag(Tensor self, int diagonal=0) -> (Tensor)'''
pass
class ATenDiagEmbedSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::diag_embed(Tensor self, int offset=0, int dim1=-2, int dim2=-1) -> (Tensor)'''
pass
class ATenDiagflatSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::diagflat(Tensor self, int offset=0) -> (Tensor)'''
pass
class ATenDiagonalSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::diagonal(Tensor(a) self, int offset=0, int dim1=0, int dim2=1) -> (Tensor(a))
aten::diagonal.Dimname(Tensor(a) self, *, str outdim, str dim1, str dim2, int offset=0) -> (Tensor(a))'''
pass
class ATenDiagonalCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::diagonal_copy(Tensor self, int offset=0, int dim1=0, int dim2=1) -> (Tensor)'''
pass
class ATenDiagonalScatterSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::diagonal_scatter(Tensor self, Tensor src, int offset=0, int dim1=0, int dim2=1) -> (Tensor)'''
pass
class ATenDiffSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::diff(Tensor self, int n=1, int dim=-1, Tensor? prepend=None, Tensor? append=None) -> (Tensor)'''
pass
class ATenDigammaSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::digamma(Tensor self) -> (Tensor)'''
pass
class ATenDimArangeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_dim_arange(Tensor like, int dim) -> (Tensor)'''
pass
class ATenDistSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::dist(Tensor self, Tensor other, Scalar p=2) -> (Tensor)'''
pass
class ATenDivSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::div.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::div.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::div.Tensor_mode(Tensor self, Tensor other, *, str? rounding_mode) -> (Tensor)
aten::div.Scalar_mode(Tensor self, Scalar other, *, str? rounding_mode) -> (Tensor)'''
pass
class ATenDivideSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::divide.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::divide.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::divide.Tensor_mode(Tensor self, Tensor other, *, str? rounding_mode) -> (Tensor)
aten::divide.Scalar_mode(Tensor self, Scalar other, *, str? rounding_mode) -> (Tensor)'''
pass
class ATenDotSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::dot(Tensor self, Tensor tensor) -> (Tensor)'''
pass
class ATenDropoutSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::dropout(Tensor input, float p, bool train) -> (Tensor)'''
pass
class ATenDsplitSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::dsplit.int(Tensor(a -> *) self, int sections) -> (Tensor[])
aten::dsplit.array(Tensor(a -> *) self, int[] indices) -> (Tensor[])'''
pass
class ATenDstackSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::dstack(Tensor[] tensors) -> (Tensor)'''
pass
class ATenEigSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::eig(Tensor self, bool eigenvectors=False) -> (Tensor eigenvalues, Tensor eigenvectors)
aten::eig.e(Tensor self, bool eigenvectors=False, *, Tensor(a!) e, Tensor(b!) v) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors)'''
pass
class ATenEinsumSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::einsum(str equation, Tensor[] tensors) -> (Tensor)
aten::einsum.sublist(Tensor a, ...) -> (Tensor)'''
pass
class ATenEluSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::elu(Tensor self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> (Tensor)'''
pass
class ATenEmbeddingSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> (Tensor)'''
pass
class ATenEmbeddingBagSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False) -> (Tensor, Tensor, Tensor, Tensor)
aten::embedding_bag.padding_idx(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq, int mode, bool sparse, Tensor? per_sample_weights, bool include_last_offset, int? padding_idx) -> (Tensor, Tensor, Tensor, Tensor)
aten::_embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False, int padding_idx=-1) -> (Tensor, Tensor, Tensor, Tensor)'''
pass
class ATenEmbeddingRenormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::embedding_renorm.functional(Tensor self, Tensor indices, float max_norm, float norm_type) -> (Tensor)'''
pass
class ATenEmptyLikeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::empty_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor)'''
pass
class ATenEmptyPerChannelAffineQuantizedSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_empty_per_channel_affine_quantized(int[] size, *, Tensor scales, Tensor zero_points, int axis, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=0) -> (Tensor)'''
pass
class ATenEmptyQuantizedSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::empty_quantized(int[] size, Tensor qtensor, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor)'''
pass
class ATenEqSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::eq.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::eq.Scalar(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenErfSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::erf(Tensor self) -> (Tensor)'''
pass
class ATenErfcSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::erfc(Tensor self) -> (Tensor)'''
pass
class ATenErfinvSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::erfinv(Tensor self) -> (Tensor)'''
pass
class ATenEuclideanDistSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_euclidean_dist(Tensor x1, Tensor x2) -> (Tensor)'''
pass
class ATenExpSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::exp(Tensor self) -> (Tensor)'''
pass
class ATenExp2Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::exp2(Tensor self) -> (Tensor)'''
pass
class ATenExpandSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::expand(Tensor(a) self, int[] size, *, bool implicit=False) -> (Tensor(a))
aten::expand.SymInt(Tensor(a) self, SymInt[] size, *, bool implicit=False) -> (Tensor(a))'''
pass
class ATenExpandAsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::expand_as(Tensor(a) self, Tensor other) -> (Tensor(a))'''
pass
class ATenExpandCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::expand_copy(Tensor self, int[] size, *, bool implicit=False) -> (Tensor)
aten::expand_copy.SymInt(Tensor self, SymInt[] size, *, bool implicit=False) -> (Tensor)'''
pass
class ATenExpm1Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::expm1(Tensor self) -> (Tensor)'''
pass
class ATenExponentialSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::exponential.functional(Tensor self, float lambd=1., *, Generator? generator=None) -> (Tensor)'''
pass
class ATenFakeQuantizeLearnablePerChannelAffineSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_fake_quantize_learnable_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, float grad_factor=1.) -> (Tensor)'''
pass
class ATenFakeQuantizeLearnablePerTensorAffineSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_fake_quantize_learnable_per_tensor_affine(Tensor self, Tensor scale, Tensor zero_point, int quant_min, int quant_max, float grad_factor=1.) -> (Tensor)'''
pass
class ATenFakeQuantizePerChannelAffineSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fake_quantize_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> (Tensor)'''
pass
class ATenFakeQuantizePerChannelAffineCachemaskSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fake_quantize_per_channel_affine_cachemask(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> (Tensor output, Tensor mask)'''
pass
class ATenFakeQuantizePerTensorAffineSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fake_quantize_per_tensor_affine(Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> (Tensor)
aten::fake_quantize_per_tensor_affine.tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, int quant_min, int quant_max) -> (Tensor)'''
pass
class ATenFakeQuantizePerTensorAffineCachemaskSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fake_quantize_per_tensor_affine_cachemask(Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> (Tensor output, Tensor mask)'''
pass
class ATenFakeQuantizePerTensorAffineCachemaskTensorQparamsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_fake_quantize_per_tensor_affine_cachemask_tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, Tensor fake_quant_enabled, int quant_min, int quant_max) -> (Tensor output, Tensor mask)'''
pass
class ATenFeatureAlphaDropoutSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::feature_alpha_dropout(Tensor input, float p, bool train) -> (Tensor)'''
pass
class ATenFeatureDropoutSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::feature_dropout(Tensor input, float p, bool train) -> (Tensor)'''
pass
class ATenFftC2cSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_fft_c2c(Tensor self, int[] dim, int normalization, bool forward) -> (Tensor)'''
pass
class ATenFftC2rSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_fft_c2r(Tensor self, int[] dim, int normalization, int last_dim_size) -> (Tensor)'''
pass
class ATenFftFftSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_fft(Tensor self, int? n=None, int dim=-1, str? norm=None) -> (Tensor)'''
pass
class ATenFftFft2Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_fft2(Tensor self, int[1]? s=None, int[1] dim=[-2, -1], str? norm=None) -> (Tensor)'''
pass
class ATenFftFftnSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_fftn(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None) -> (Tensor)'''
pass
class ATenFftFftshiftSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_fftshift(Tensor self, int[1]? dim=None) -> (Tensor)'''
pass
class ATenFftHfftSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_hfft(Tensor self, int? n=None, int dim=-1, str? norm=None) -> (Tensor)'''
pass
class ATenFftHfft2Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_hfft2(Tensor self, int[1]? s=None, int[1] dim=[-2, -1], str? norm=None) -> (Tensor)'''
pass
class ATenFftHfftnSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_hfftn(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None) -> (Tensor)'''
pass
class ATenFftIfftSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_ifft(Tensor self, int? n=None, int dim=-1, str? norm=None) -> (Tensor)'''
pass
class ATenFftIfft2Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_ifft2(Tensor self, int[1]? s=None, int[1] dim=[-2, -1], str? norm=None) -> (Tensor)'''
pass
class ATenFftIfftnSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_ifftn(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None) -> (Tensor)'''
pass
class ATenFftIfftshiftSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_ifftshift(Tensor self, int[1]? dim=None) -> (Tensor)'''
pass
class ATenFftIhfftSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_ihfft(Tensor self, int? n=None, int dim=-1, str? norm=None) -> (Tensor)'''
pass
class ATenFftIhfft2Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_ihfft2(Tensor self, int[1]? s=None, int[1] dim=[-2, -1], str? norm=None) -> (Tensor)'''
pass
class ATenFftIhfftnSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_ihfftn(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None) -> (Tensor)'''
pass
class ATenFftIrfftSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_irfft(Tensor self, int? n=None, int dim=-1, str? norm=None) -> (Tensor)'''
pass
class ATenFftIrfft2Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_irfft2(Tensor self, int[1]? s=None, int[1] dim=[-2, -1], str? norm=None) -> (Tensor)'''
pass
class ATenFftIrfftnSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_irfftn(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None) -> (Tensor)'''
pass
class ATenFftR2cSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_fft_r2c(Tensor self, int[] dim, int normalization, bool onesided) -> (Tensor)'''
pass
class ATenFftRfftSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_rfft(Tensor self, int? n=None, int dim=-1, str? norm=None) -> (Tensor)'''
pass
class ATenFftRfft2Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_rfft2(Tensor self, int[1]? s=None, int[1] dim=[-2, -1], str? norm=None) -> (Tensor)'''
pass
class ATenFftRfftnSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fft_rfftn(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None) -> (Tensor)'''
pass
class ATenFillSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fill.Scalar(Tensor self, Scalar value) -> (Tensor)
aten::fill.Tensor(Tensor self, Tensor value) -> (Tensor)
aten::fill_.Scalar(Tensor(a!) self, Scalar value) -> (Tensor(a!))
aten::fill_.Tensor(Tensor(a!) self, Tensor value) -> (Tensor(a!))'''
pass
class ATenFixSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fix(Tensor self) -> (Tensor)'''
pass
class ATenFlattenSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::flatten.DimnameList(Tensor(a) self, str[] dims, str out_dim) -> (Tensor(a))
aten::flatten.named_out_dim(Tensor(a) self, int start_dim, int end_dim, str out_dim) -> (Tensor(a))
aten::flatten.using_ints(Tensor(a) self, int start_dim=0, int end_dim=-1) -> (Tensor(a))
aten::flatten.using_names(Tensor(a) self, str start_dim, str end_dim, str out_dim) -> (Tensor(a))'''
pass
class ATenFlattenDenseTensorsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::flatten_dense_tensors(Tensor[] tensors) -> (Tensor)'''
pass
class ATenFlipSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::flip(Tensor self, int[] dims) -> (Tensor)'''
pass
class ATenFliplrSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fliplr(Tensor self) -> (Tensor)'''
pass
class ATenFlipudSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::flipud(Tensor self) -> (Tensor)'''
pass
class ATenFloatPowerSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::float_power.Tensor_Tensor(Tensor self, Tensor exponent) -> (Tensor)
aten::float_power.Scalar(Scalar self, Tensor exponent) -> (Tensor)
aten::float_power.Tensor_Scalar(Tensor self, Scalar exponent) -> (Tensor)'''
pass
class ATenFloorSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::floor(Tensor self) -> (Tensor)'''
pass
class ATenFloorDivideSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::floor_divide(Tensor self, Tensor other) -> (Tensor)
aten::floor_divide.Scalar(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenFmaxSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fmax(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenFminSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fmin(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenFmodSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fmod.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::fmod.Scalar(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenFracSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::frac(Tensor self) -> (Tensor)'''
pass
class ATenFractionalMaxPool2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fractional_max_pool2d(Tensor self, int[2] kernel_size, int[2] output_size, Tensor random_samples) -> (Tensor, Tensor)
aten::fractional_max_pool2d.output(Tensor self, int[2] kernel_size, int[2] output_size, Tensor random_samples, *, Tensor(a!) output, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))'''
pass
class ATenFractionalMaxPool3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fractional_max_pool3d(Tensor self, int[3] kernel_size, int[3] output_size, Tensor random_samples) -> (Tensor, Tensor)
aten::fractional_max_pool3d.output(Tensor self, int[3] kernel_size, int[3] output_size, Tensor random_samples, *, Tensor(a!) output, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))'''
pass
class ATenFrexpSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::frexp.Tensor(Tensor self) -> (Tensor mantissa, Tensor exponent)'''
pass
class ATenFrobeniusNormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::frobenius_norm(Tensor self) -> (Tensor)
aten::frobenius_norm.dim(Tensor self, int[1] dim, bool keepdim=False) -> (Tensor)'''
pass
class ATenFullLikeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::full_like(Tensor self, Scalar fill_value, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor)'''
pass
class ATenFusedDropoutSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_fused_dropout(Tensor self, float p, Generator? generator=None) -> (Tensor, Tensor)'''
pass
class ATenFusedMovingAvgObsFakeQuantSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::fused_moving_avg_obs_fake_quant(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor)'''
pass
class ATenFusedMovingAvgObsFqHelperSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_fused_moving_avg_obs_fq_helper(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask)
aten::_fused_moving_avg_obs_fq_helper.functional(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor running_min, Tensor running_max, Tensor scale, Tensor zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask, Tensor running_min_out, Tensor running_max_out, Tensor scale_out, Tensor zero_point_out)
aten::_fused_moving_avg_obs_fq_helper.out(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False, *, Tensor(e!) out0, Tensor(f!) out1) -> (Tensor(e!), Tensor(f!))'''
pass
class ATenFwPrimalSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_fw_primal(Tensor(a) self, int level) -> (Tensor(a))'''
pass
class ATenFwPrimalCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_fw_primal_copy(Tensor self, int level) -> (Tensor)'''
pass
class ATenGatherSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::gather(Tensor self, int dim, Tensor index, *, bool sparse_grad=False) -> (Tensor)
aten::gather.dimname(Tensor self, str dim, Tensor index, *, bool sparse_grad=False) -> (Tensor)'''
pass
class ATenGcdSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::gcd(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenGeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::ge.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::ge.Scalar(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenGeluSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::gelu(Tensor self, *, str approximate="none") -> (Tensor)'''
pass
class ATenGeometricSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::geometric.functional(Tensor self, float p, *, Generator? generator=None) -> (Tensor)'''
pass
class ATenGeqrfSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::geqrf(Tensor self) -> (Tensor a, Tensor tau)
aten::geqrf.a(Tensor self, *, Tensor(a!) a, Tensor(b!) tau) -> (Tensor(a!) a, Tensor(b!) tau)'''
pass
class ATenGerSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::ger(Tensor self, Tensor vec2) -> (Tensor)'''
pass
class ATenGluSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::glu(Tensor self, int dim=-1) -> (Tensor)'''
pass
class ATenGluBackwardJvpSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::glu_backward_jvp(Tensor grad_x, Tensor grad_glu, Tensor x, Tensor dgrad_glu, Tensor dx, int dim) -> (Tensor)'''
pass
class ATenGluJvpSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::glu_jvp(Tensor glu, Tensor x, Tensor dx, int dim) -> (Tensor)'''
pass
class ATenGreaterSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::greater.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::greater.Tensor(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenGreaterEqualSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::greater_equal.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::greater_equal.Tensor(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenGridSamplerSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::grid_sampler(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor)'''
pass
class ATenGridSampler2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::grid_sampler_2d(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor)'''
pass
class ATenGridSampler2dCpuFallbackSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_grid_sampler_2d_cpu_fallback(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor)'''
pass
class ATenGridSampler3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::grid_sampler_3d(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor)'''
pass
class ATenGroupNormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::group_norm(Tensor input, int num_groups, Tensor? weight=None, Tensor? bias=None, float eps=1.0000000000000001e-05, bool cudnn_enabled=True) -> (Tensor)'''
pass
class ATenGruSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::gru.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)
aten::gru.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)'''
pass
class ATenGruCellSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::gru_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor)'''
pass
class ATenGtSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::gt.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::gt.Scalar(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenHardshrinkSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::hardshrink(Tensor self, Scalar lambd=0.5) -> (Tensor)'''
pass
class ATenHardsigmoidSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::hardsigmoid(Tensor self) -> (Tensor)'''
pass
class ATenHardswishSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::hardswish(Tensor self) -> (Tensor)'''
pass
class ATenHardtanhSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::hardtanh(Tensor self, Scalar min_val=-1, Scalar max_val=1) -> (Tensor)'''
pass
class ATenHeavisideSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::heaviside(Tensor self, Tensor values) -> (Tensor)'''
pass
class ATenHingeEmbeddingLossSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::hinge_embedding_loss(Tensor self, Tensor target, float margin=1., int reduction=1) -> (Tensor)'''
pass
class ATenHistcSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::histc(Tensor self, int bins=100, Scalar min=0, Scalar max=0) -> (Tensor)'''
pass
class ATenHistogramSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::histogram.bins_tensor(Tensor self, Tensor bins, *, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor bin_edges)
aten::histogram.bin_ct(Tensor self, int bins=100, *, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor bin_edges)'''
pass
class ATenHistogramddSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::histogramdd(Tensor self, int[] bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges)
aten::histogramdd.int_bins(Tensor self, int bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges)
aten::histogramdd.TensorList_bins(Tensor self, Tensor[] bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges)'''
pass
class ATenHistogramddBinEdgesSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_histogramdd_bin_edges(Tensor self, int[] bins, *, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor[])'''
pass
class ATenHistogramddFromBinCtsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_histogramdd_from_bin_cts(Tensor self, int[] bins, *, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor)'''
pass
class ATenHistogramddFromBinTensorsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_histogramdd_from_bin_tensors(Tensor self, Tensor[] bins, *, Tensor? weight=None, bool density=False) -> (Tensor)'''
pass
class ATenHsplitSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::hsplit.int(Tensor(a -> *) self, int sections) -> (Tensor[])
aten::hsplit.array(Tensor(a -> *) self, int[] indices) -> (Tensor[])'''
pass
class ATenHspmmSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::hspmm(Tensor mat1, Tensor mat2) -> (Tensor)'''
pass
class ATenHstackSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::hstack(Tensor[] tensors) -> (Tensor)'''
pass
class ATenHuberLossSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::huber_loss(Tensor self, Tensor target, int reduction=1, float delta=1.) -> (Tensor)'''
pass
class ATenHypotSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::hypot(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenI0Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::i0(Tensor self) -> (Tensor)'''
pass
class ATenIgammaSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::igamma(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenIgammacSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::igammac(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenIm2colSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::im2col(Tensor self, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> (Tensor)'''
pass
class ATenImagSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::imag(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenIndexSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::index.Tensor(Tensor self, Tensor?[] indices) -> (Tensor)
aten::index.Tensor_hacked_twin(Tensor self, Tensor[] indices) -> (Tensor)'''
pass
class ATenIndexAddSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::index_add(Tensor self, int dim, Tensor index, Tensor source, *, Scalar alpha=1) -> (Tensor)
aten::index_add.dimname(Tensor self, str dim, Tensor index, Tensor source, *, Scalar alpha=1) -> (Tensor)'''
pass
class ATenIndexCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::index_copy(Tensor self, int dim, Tensor index, Tensor source) -> (Tensor)
aten::index_copy.dimname(Tensor self, str dim, Tensor index, Tensor source) -> (Tensor)'''
pass
class ATenIndexFillSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::index_fill.Dimname_Scalar(Tensor self, str dim, Tensor index, Scalar value) -> (Tensor)
aten::index_fill.Dimname_Tensor(Tensor self, str dim, Tensor index, Tensor value) -> (Tensor)
aten::index_fill.int_Scalar(Tensor self, int dim, Tensor index, Scalar value) -> (Tensor)
aten::index_fill.int_Tensor(Tensor self, int dim, Tensor index, Tensor value) -> (Tensor)'''
pass
class ATenIndexPutSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::index_put(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False) -> (Tensor)
aten::index_put.hacked_twin(Tensor self, Tensor[] indices, Tensor values, bool accumulate=False) -> (Tensor)'''
pass
class ATenIndexPutImplSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_index_put_impl.functional(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False, bool unsafe=False) -> (Tensor)'''
pass
class ATenIndexReduceSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::index_reduce(Tensor self, int dim, Tensor index, Tensor source, str reduce, *, bool include_self=True) -> (Tensor)'''
pass
class ATenIndexSelectSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::index_select(Tensor self, int dim, Tensor index) -> (Tensor)
aten::index_select.dimname(Tensor self, str dim, Tensor index) -> (Tensor)'''
pass
class ATenIndicesSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::indices(Tensor(a) self) -> (Tensor(a))
aten::_indices(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenIndicesCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::indices_copy(Tensor self) -> (Tensor)
aten::_indices_copy(Tensor self) -> (Tensor)'''
pass
class ATenInnerSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::inner(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenInstanceNormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::instance_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool use_input_stats, float momentum, float eps, bool cudnn_enabled) -> (Tensor)'''
pass
class ATenIntReprSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::int_repr(Tensor self) -> (Tensor)'''
pass
class ATenInterpolateSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::__interpolate.scale_list(Tensor input, int? size=None, float[]? scale_factor=None, str mode="nearest", bool? align_corners=None, bool? recompute_scale_factor=None, bool antialias=False) -> (Tensor)
aten::__interpolate.size_list_scale_list(Tensor input, int[]? size=None, float[]? scale_factor=None, str mode="nearest", bool? align_corners=None, bool? recompute_scale_factor=None, bool antialias=False) -> (Tensor)
aten::__interpolate(Tensor input, int? size=None, float? scale_factor=None, str mode="nearest", bool? align_corners=None, bool? recompute_scale_factor=None, bool antialias=False) -> (Tensor)
aten::__interpolate.size_list(Tensor input, int[]? size=None, float? scale_factor=None, str mode="nearest", bool? align_corners=None, bool? recompute_scale_factor=None, bool antialias=False) -> (Tensor)'''
pass
class ATenInverseSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::inverse(Tensor self) -> (Tensor)'''
pass
class ATenIstftSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::istft(Tensor self, int n_fft, int? hop_length=None, int? win_length=None, Tensor? window=None, bool center=True, bool normalized=False, bool? onesided=None, int? length=None, bool return_complex=False) -> (Tensor)'''
pass
class ATenKeysSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::keys.Tensor(Dict(Tensor, t) self) -> (Tensor[](*))'''
pass
class ATenKlDivSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::kl_div(Tensor self, Tensor target, int reduction=1, *, bool log_target=False) -> (Tensor)'''
pass
class ATenKronSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::kron(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenKthvalueSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::kthvalue(Tensor self, int k, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices)
aten::kthvalue.dimname(Tensor self, int k, str dim, bool keepdim=False) -> (Tensor values, Tensor indices)
aten::kthvalue.values(Tensor self, int k, int dim=-1, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)'''
pass
class ATenL1LossSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::l1_loss(Tensor self, Tensor target, int reduction=1) -> (Tensor)'''
pass
class ATenLayerNormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::layer_norm(Tensor input, int[] normalized_shape, Tensor? weight=None, Tensor? bias=None, float eps=1.0000000000000001e-05, bool cudnn_enable=True) -> (Tensor)'''
pass
class ATenLcmSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::lcm(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenLdexpSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::ldexp.Tensor(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenLeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::le.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::le.Scalar(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenLeakyReluSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::leaky_relu(Tensor self, Scalar negative_slope=0.01) -> (Tensor)'''
pass
class ATenLerpSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::lerp.Scalar(Tensor self, Tensor end, Scalar weight) -> (Tensor)
aten::lerp.Tensor(Tensor self, Tensor end, Tensor weight) -> (Tensor)'''
pass
class ATenLessSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::less.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::less.Tensor(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenLessEqualSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::less_equal.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::less_equal.Tensor(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenLgammaSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::lgamma(Tensor self) -> (Tensor)'''
pass
class ATenLiftSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::lift(Tensor self) -> (Tensor)'''
pass
class ATenLinalgCholeskySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_cholesky(Tensor self, *, bool upper=False) -> (Tensor)'''
pass
class ATenLinalgCholeskyExSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_cholesky_ex(Tensor self, *, bool upper=False, bool check_errors=False) -> (Tensor L, Tensor info)
aten::linalg_cholesky_ex.L(Tensor self, *, bool upper=False, bool check_errors=False, Tensor(a!) L, Tensor(b!) info) -> (Tensor(a!) L, Tensor(b!) info)'''
pass
class ATenLinalgCondSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_cond(Tensor self, Scalar? p=None) -> (Tensor)
aten::linalg_cond.p_str(Tensor self, str p) -> (Tensor)'''
pass
class ATenLinalgCrossSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_cross(Tensor self, Tensor other, *, int dim=-1) -> (Tensor)'''
pass
class ATenLinalgDetSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_det(Tensor self) -> (Tensor)'''
pass
class ATenLinalgDiagonalSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_diagonal(Tensor(a) A, *, int offset=0, int dim1=-2, int dim2=-1) -> (Tensor(a))'''
pass
class ATenLinalgEigSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_eig(Tensor self) -> (Tensor eigenvalues, Tensor eigenvectors)
aten::linalg_eig.out(Tensor self, *, Tensor(a!) eigenvalues, Tensor(b!) eigenvectors) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors)'''
pass
class ATenLinalgEighSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_eigh(Tensor self, str UPLO="L") -> (Tensor eigenvalues, Tensor eigenvectors)
aten::linalg_eigh.eigvals(Tensor self, str UPLO="L", *, Tensor(a!) eigvals, Tensor(b!) eigvecs) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors)'''
pass
class ATenLinalgEigvalsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_eigvals(Tensor self) -> (Tensor)'''
pass
class ATenLinalgEigvalshSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_eigvalsh(Tensor self, str UPLO="L") -> (Tensor)'''
pass
class ATenLinalgHouseholderProductSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_householder_product(Tensor input, Tensor tau) -> (Tensor)'''
pass
class ATenLinalgInvSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_inv(Tensor self) -> (Tensor)'''
pass
class ATenLinalgInvExSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_inv_ex(Tensor self, *, bool check_errors=False) -> (Tensor inverse, Tensor info)
aten::linalg_inv_ex.inverse(Tensor self, *, bool check_errors=False, Tensor(a!) inverse, Tensor(b!) info) -> (Tensor(a!) inverse, Tensor(b!) info)'''
pass
class ATenLinalgInvOutHelperSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_linalg_inv_out_helper.functional(Tensor self, Tensor infos_lu, Tensor infos_getri) -> (Tensor, Tensor infos_lu_out, Tensor infos_getri_out)'''
pass
class ATenLinalgLdlFactorSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_ldl_factor(Tensor self, *, bool hermitian=False) -> (Tensor LD, Tensor pivots)
aten::linalg_ldl_factor.out(Tensor self, *, bool hermitian=False, Tensor(a!) LD, Tensor(b!) pivots) -> (Tensor(a!) LD, Tensor(b!) pivots)'''
pass
class ATenLinalgLdlFactorExSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_ldl_factor_ex(Tensor self, *, bool hermitian=False, bool check_errors=False) -> (Tensor LD, Tensor pivots, Tensor info)
aten::linalg_ldl_factor_ex.out(Tensor self, *, bool hermitian=False, bool check_errors=False, Tensor(a!) LD, Tensor(b!) pivots, Tensor(c!) info) -> (Tensor(a!) LD, Tensor(b!) pivots, Tensor(c!) info)'''
pass
class ATenLinalgLdlSolveSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_ldl_solve(Tensor LD, Tensor pivots, Tensor B, *, bool hermitian=False) -> (Tensor)'''
pass
class ATenLinalgLstsqSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_lstsq(Tensor self, Tensor b, float? rcond=None, *, str? driver=None) -> (Tensor solution, Tensor residuals, Tensor rank, Tensor singular_values)
aten::linalg_lstsq.out(Tensor self, Tensor b, float? rcond=None, *, str? driver=None, Tensor(a!) solution, Tensor(b!) residuals, Tensor(c!) rank, Tensor(d!) singular_values) -> (Tensor(a!) solution, Tensor(b!) residuals, Tensor(c!) rank, Tensor(d!) singular_values)'''
pass
class ATenLinalgLuSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_lu(Tensor A, *, bool pivot=True) -> (Tensor P, Tensor L, Tensor U)
aten::linalg_lu.out(Tensor A, *, bool pivot=True, Tensor(a!) P, Tensor(b!) L, Tensor(c!) U) -> (Tensor(a!) P, Tensor(b!) L, Tensor(c!) U)'''
pass
class ATenLinalgLuFactorSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_lu_factor(Tensor A, *, bool pivot=True) -> (Tensor LU, Tensor pivots)
aten::linalg_lu_factor.out(Tensor A, *, bool pivot=True, Tensor(a!) LU, Tensor(b!) pivots) -> (Tensor(a!) LU, Tensor(b!) pivots)'''
pass
class ATenLinalgLuFactorExSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_lu_factor_ex(Tensor A, *, bool pivot=True, bool check_errors=False) -> (Tensor LU, Tensor pivots, Tensor info)
aten::linalg_lu_factor_ex.out(Tensor A, *, bool pivot=True, bool check_errors=False, Tensor(a!) LU, Tensor(b!) pivots, Tensor(c!) info) -> (Tensor(a!) LU, Tensor(b!) pivots, Tensor(c!) info)'''
pass
class ATenLinalgMatmulSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_matmul(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenLinalgMatrixExpSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_matrix_exp(Tensor self) -> (Tensor)'''
pass
class ATenLinalgMatrixNormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_matrix_norm(Tensor self, Scalar ord, int[] dim=[-2, -1], bool keepdim=False, *, int? dtype=None) -> (Tensor)
aten::linalg_matrix_norm.str_ord(Tensor self, str ord="fro", int[] dim=[-2, -1], bool keepdim=False, *, int? dtype=None) -> (Tensor)'''
pass
class ATenLinalgMatrixPowerSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_matrix_power(Tensor self, int n) -> (Tensor)'''
pass
class ATenLinalgMatrixRankSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_matrix_rank(Tensor self, float tol, bool hermitian=False) -> (Tensor)
aten::linalg_matrix_rank.tol_tensor(Tensor input, Tensor tol, bool hermitian=False) -> (Tensor)
aten::linalg_matrix_rank.atol_rtol_tensor(Tensor input, *, Tensor? atol=None, Tensor? rtol=None, bool hermitian=False) -> (Tensor)
aten::linalg_matrix_rank.atol_rtol_float(Tensor self, *, float? atol=None, float? rtol=None, bool hermitian=False) -> (Tensor)'''
pass
class ATenLinalgMultiDotSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_multi_dot(Tensor[] tensors) -> (Tensor)'''
pass
class ATenLinalgNormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_norm(Tensor self, Scalar? ord=None, int[1]? dim=None, bool keepdim=False, *, int? dtype=None) -> (Tensor)
aten::linalg_norm.ord_str(Tensor self, str ord, int[1]? dim=None, bool keepdim=False, *, int? dtype=None) -> (Tensor)'''
pass
class ATenLinalgPinvSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_pinv.atol_rtol_tensor(Tensor self, *, Tensor? atol=None, Tensor? rtol=None, bool hermitian=False) -> (Tensor)
aten::linalg_pinv.atol_rtol_float(Tensor self, *, float? atol=None, float? rtol=None, bool hermitian=False) -> (Tensor)
aten::linalg_pinv(Tensor self, float rcond, bool hermitian=False) -> (Tensor)
aten::linalg_pinv.rcond_tensor(Tensor self, Tensor rcond, bool hermitian=False) -> (Tensor)'''
pass
class ATenLinalgQrSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_qr(Tensor A, str mode="reduced") -> (Tensor Q, Tensor R)
aten::linalg_qr.out(Tensor A, str mode="reduced", *, Tensor(a!) Q, Tensor(b!) R) -> (Tensor(a!) Q, Tensor(b!) R)'''
pass
class ATenLinalgQrHelperSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_linalg_qr_helper(Tensor self, str mode) -> (Tensor, Tensor)'''
pass
class ATenLinalgSlogdetSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_slogdet(Tensor self) -> (Tensor sign, Tensor logabsdet)
aten::linalg_slogdet.out(Tensor self, *, Tensor(a!) sign, Tensor(b!) logabsdet) -> (Tensor(a!) sign, Tensor(b!) logabsdet)'''
pass
class ATenLinalgSolveSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_solve(Tensor input, Tensor other) -> (Tensor)'''
pass
class ATenLinalgSolveTriangularSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_solve_triangular(Tensor self, Tensor B, *, bool upper, bool left=True, bool unitriangular=False) -> (Tensor)'''
pass
class ATenLinalgSvdSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_linalg_svd(Tensor A, bool full_matrices=False, bool compute_uv=True) -> (Tensor U, Tensor S, Tensor Vh)
aten::_linalg_svd.U(Tensor A, bool full_matrices=False, bool compute_uv=True, *, Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh) -> (Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh)
aten::linalg_svd(Tensor A, bool full_matrices=True) -> (Tensor U, Tensor S, Tensor Vh)
aten::linalg_svd.U(Tensor A, bool full_matrices=True, *, Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh) -> (Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh)'''
pass
class ATenLinalgSvdvalsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_svdvals(Tensor A) -> (Tensor)'''
pass
class ATenLinalgTensorinvSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_tensorinv(Tensor self, int ind=2) -> (Tensor)'''
pass
class ATenLinalgTensorsolveSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_tensorsolve(Tensor self, Tensor other, int[]? dims=None) -> (Tensor)'''
pass
class ATenLinalgVanderSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_vander(Tensor x, *, int? N=None) -> (Tensor)'''
pass
class ATenLinalgVectorNormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linalg_vector_norm(Tensor self, Scalar ord=2, int[1]? dim=None, bool keepdim=False, *, int? dtype=None) -> (Tensor)'''
pass
class ATenLinearSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::linear(Tensor input, Tensor weight, Tensor? bias=None) -> (Tensor)'''
pass
class ATenLogSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::log(Tensor self) -> (Tensor)'''
pass
class ATenLog10Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::log10(Tensor self) -> (Tensor)'''
pass
class ATenLog1pSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::log1p(Tensor self) -> (Tensor)'''
pass
class ATenLog2Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::log2(Tensor self) -> (Tensor)'''
pass
class ATenLogNormalSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::log_normal.functional(Tensor self, float mean=1., float std=2., *, Generator? generator=None) -> (Tensor)'''
pass
class ATenLogSigmoidSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::log_sigmoid(Tensor self) -> (Tensor)'''
pass
class ATenLogSoftmaxSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::log_softmax.int(Tensor self, int dim, int? dtype=None) -> (Tensor)
aten::log_softmax.Dimname(Tensor self, str dim, *, int? dtype=None) -> (Tensor)
aten::_log_softmax(Tensor self, int dim, bool half_to_float) -> (Tensor)'''
pass
class ATenLogSoftmaxBackwardDataSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_log_softmax_backward_data(Tensor grad_output, Tensor output, int dim, int input_dtype) -> (Tensor)'''
pass
class ATenLogaddexpSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::logaddexp(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenLogaddexp2Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::logaddexp2(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenLogcumsumexpSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::logcumsumexp(Tensor self, int dim) -> (Tensor)
aten::logcumsumexp.dimname(Tensor self, str dim) -> (Tensor)
aten::_logcumsumexp(Tensor self, int dim) -> (Tensor)'''
pass
class ATenLogdetSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::logdet(Tensor self) -> (Tensor)'''
pass
class ATenLogicalAndSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::logical_and(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenLogicalNotSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::logical_not(Tensor self) -> (Tensor)'''
pass
class ATenLogicalOrSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::logical_or(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenLogicalXorSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::logical_xor(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenLogitSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::logit(Tensor self, float? eps=None) -> (Tensor)'''
pass
class ATenLogsumexpSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::logsumexp(Tensor self, int[1] dim, bool keepdim=False) -> (Tensor)
aten::logsumexp.names(Tensor self, str[1] dim, bool keepdim=False) -> (Tensor)'''
pass
class ATenLshiftSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::__lshift__.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::__lshift__.Tensor(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenLstmSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::lstm.input(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor, Tensor)
aten::lstm.data(Tensor data, Tensor batch_sizes, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor, Tensor)'''
pass
class ATenLstmCellSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor, Tensor)'''
pass
class ATenLstmMpsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_lstm_mps(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor, Tensor, Tensor, Tensor)'''
pass
class ATenLstsqSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::lstsq(Tensor self, Tensor A) -> (Tensor solution, Tensor QR)
aten::lstsq.X(Tensor self, Tensor A, *, Tensor(a!) X, Tensor(b!) qr) -> (Tensor(a!) solution, Tensor(b!) QR)'''
pass
class ATenLtSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::lt.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::lt.Scalar(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenLuSolveSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::lu_solve(Tensor self, Tensor LU_data, Tensor LU_pivots) -> (Tensor)'''
pass
class ATenLuWithInfoSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_lu_with_info(Tensor self, bool pivot=True, bool check_errors=True) -> (Tensor LU, Tensor pivots, Tensor info)'''
pass
class ATenMHSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::mH(Tensor(a) self) -> (Tensor(a))
aten::mH.a(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenMTSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::mT(Tensor(a) self) -> (Tensor(a))
aten::mT.a(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenMakeDualSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_make_dual(Tensor(a) primal, Tensor tangent, int level) -> (Tensor(a))'''
pass
class ATenMakeDualCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_make_dual_copy(Tensor primal, Tensor tangent, int level) -> (Tensor)'''
pass
class ATenMakePerChannelQuantizedTensorSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_make_per_channel_quantized_tensor(Tensor self, Tensor scale, Tensor zero_point, int axis) -> (Tensor)'''
pass
class ATenMakePerTensorQuantizedTensorSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_make_per_tensor_quantized_tensor(Tensor self, float scale, int zero_point) -> (Tensor)'''
pass
class ATenMarginRankingLossSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::margin_ranking_loss(Tensor input1, Tensor input2, Tensor target, float margin=0., int reduction=1) -> (Tensor)'''
pass
class ATenMaskedFillSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::masked_fill.Scalar(Tensor self, Tensor mask, Scalar value) -> (Tensor)
aten::masked_fill.Tensor(Tensor self, Tensor mask, Tensor value) -> (Tensor)'''
pass
class ATenMaskedScaleSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_masked_scale(Tensor self, Tensor mask, float scale) -> (Tensor)'''
pass
class ATenMaskedScatterSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::masked_scatter(Tensor self, Tensor mask, Tensor source) -> (Tensor)'''
pass
class ATenMaskedSelectSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::masked_select(Tensor self, Tensor mask) -> (Tensor)'''
pass
class ATenMaskedSoftmaxSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_masked_softmax(Tensor self, Tensor mask, int? dim=None) -> (Tensor)'''
pass
class ATenMatmulSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::matmul(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenMatrixExpSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::matrix_exp(Tensor self) -> (Tensor)'''
pass
class ATenMatrixHSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::matrix_H(Tensor(a) self) -> (Tensor(a))
aten::matrix_H.a(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenMatrixPowerSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::matrix_power(Tensor self, int n) -> (Tensor)'''
pass
class ATenMatrixRankSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::matrix_rank(Tensor self, bool symmetric=False) -> (Tensor)
aten::matrix_rank.tol(Tensor self, float tol, bool symmetric=False) -> (Tensor)'''
pass
class ATenMaxSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::max(Tensor self) -> (Tensor)
aten::max.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)
aten::max.dim_max(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices)
aten::max.names_dim(Tensor self, str dim, bool keepdim=False) -> (Tensor values, Tensor indices)
aten::max.names_dim_max(Tensor self, str dim, bool keepdim=False, *, Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices)
aten::max.other(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenMaxPool1dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::max_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=[0], int[1] dilation=[1], bool ceil_mode=False) -> (Tensor)'''
pass
class ATenMaxPool1dWithIndicesSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::max_pool1d_with_indices(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=[0], int[1] dilation=[1], bool ceil_mode=False) -> (Tensor, Tensor)'''
pass
class ATenMaxPool2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], int[2] dilation=[1, 1], bool ceil_mode=False) -> (Tensor)'''
pass
class ATenMaxPool2dWithIndicesSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::max_pool2d_with_indices(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], int[2] dilation=[1, 1], bool ceil_mode=False) -> (Tensor, Tensor)
aten::max_pool2d_with_indices.out(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], int[2] dilation=[1, 1], bool ceil_mode=False, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))'''
pass
class ATenMaxPool3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=[0, 0, 0], int[3] dilation=[1, 1, 1], bool ceil_mode=False) -> (Tensor)'''
pass
class ATenMaxPool3dWithIndicesSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::max_pool3d_with_indices(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=[0, 0, 0], int[3] dilation=[1, 1, 1], bool ceil_mode=False) -> (Tensor, Tensor)
aten::max_pool3d_with_indices.out(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=[0, 0, 0], int[3] dilation=[1, 1, 1], bool ceil_mode=False, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))'''
pass
class ATenMaxUnpool2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::max_unpool2d(Tensor self, Tensor indices, int[2] output_size) -> (Tensor)'''
pass
class ATenMaxUnpool3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::max_unpool3d(Tensor self, Tensor indices, int[3] output_size, int[3] stride, int[3] padding) -> (Tensor)'''
pass
class ATenMaximumSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::maximum(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenMeanSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::mean(Tensor self, *, int? dtype=None) -> (Tensor)
aten::mean.dim(Tensor self, int[1] dim, bool keepdim=False, *, int? dtype=None) -> (Tensor)
aten::mean.names_dim(Tensor self, str[1] dim, bool keepdim=False, *, int? dtype=None) -> (Tensor)'''
pass
class ATenMedianSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::median(Tensor self) -> (Tensor)
aten::median.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)
aten::median.dim_values(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
aten::median.names_dim(Tensor self, str dim, bool keepdim=False) -> (Tensor values, Tensor indices)
aten::median.names_dim_values(Tensor self, str dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)'''
pass
class ATenMeshgridSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::meshgrid(Tensor[] tensors) -> (Tensor[])
aten::meshgrid.indexing(Tensor[] tensors, *, str indexing) -> (Tensor[])'''
pass
class ATenMinSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::min(Tensor self) -> (Tensor)
aten::min.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)
aten::min.dim_min(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) min, Tensor(b!) min_indices) -> (Tensor(a!) values, Tensor(b!) indices)
aten::min.names_dim(Tensor self, str dim, bool keepdim=False) -> (Tensor values, Tensor indices)
aten::min.names_dim_min(Tensor self, str dim, bool keepdim=False, *, Tensor(a!) min, Tensor(b!) min_indices) -> (Tensor(a!) values, Tensor(b!) indices)
aten::min.other(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenMinimumSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::minimum(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenMishSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::mish(Tensor self) -> (Tensor)'''
pass
class ATenMmSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::mm(Tensor self, Tensor mat2) -> (Tensor)'''
pass
class ATenModeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices)
aten::mode.dimname(Tensor self, str dim, bool keepdim=False) -> (Tensor values, Tensor indices)
aten::mode.values(Tensor self, int dim=-1, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)'''
pass
class ATenMoveaxisSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::moveaxis.intlist(Tensor(a) self, int[] source, int[] destination) -> (Tensor(a))
aten::moveaxis.int(Tensor(a) self, int source, int destination) -> (Tensor(a))'''
pass
class ATenMovedimSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::movedim.intlist(Tensor(a) self, int[] source, int[] destination) -> (Tensor(a))
aten::movedim.int(Tensor(a) self, int source, int destination) -> (Tensor(a))'''
pass
class ATenMpsConvolutionSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_mps_convolution(Tensor self, Tensor weight, Tensor? bias, int[] padding, int[] stride, int[] dilation, int groups) -> (Tensor)'''
pass
class ATenMpsConvolutionTransposeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_mps_convolution_transpose(Tensor self, Tensor weight, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups) -> (Tensor)'''
pass
class ATenMpsLinearSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_mps_linear(Tensor self, Tensor weight, Tensor? bias=None) -> (Tensor)'''
pass
class ATenMpsLinearBackwardInputSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_mps_linear_backward_input(int[] input_size, Tensor grad_output, Tensor weight) -> (Tensor)'''
pass
class ATenMpsLinearBackwardWeightsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_mps_linear_backward_weights(Tensor grad_output, Tensor input, Tensor weight, bool bias_defined) -> (Tensor, Tensor)'''
pass
class ATenMpsMaxPool2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_mps_max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], int[2] dilation=[1, 1], bool ceil_mode=False) -> (Tensor)'''
pass
class ATenMseLossSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::mse_loss(Tensor self, Tensor target, int reduction=1) -> (Tensor)'''
pass
class ATenMsortSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::msort(Tensor self) -> (Tensor)'''
pass
class ATenMulSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::mul.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::mul.Scalar(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenMultiMarginLossSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::multi_margin_loss(Tensor self, Tensor target, Scalar p=1, Scalar margin=1, Tensor? weight=None, int reduction=1) -> (Tensor)'''
pass
class ATenMultilabelMarginLossSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::multilabel_margin_loss(Tensor self, Tensor target, int reduction=1) -> (Tensor)'''
pass
class ATenMultinomialSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::multinomial(Tensor self, int num_samples, bool replacement=False, *, Generator? generator=None) -> (Tensor)'''
pass
class ATenMultiplySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::multiply.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::multiply.Scalar(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenMvSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::mv(Tensor self, Tensor vec) -> (Tensor)'''
pass
class ATenMvlgammaSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::mvlgamma(Tensor self, int p) -> (Tensor)'''
pass
class ATenNanToNumSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::nan_to_num(Tensor self, float? nan=None, float? posinf=None, float? neginf=None) -> (Tensor)'''
pass
class ATenNanmeanSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::nanmean(Tensor self, int[1] dim=[], bool keepdim=False, *, int? dtype=None) -> (Tensor)'''
pass
class ATenNanmedianSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::nanmedian(Tensor self) -> (Tensor)
aten::nanmedian.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)
aten::nanmedian.dim_values(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
aten::nanmedian.names_dim(Tensor self, str dim, bool keepdim=False) -> (Tensor values, Tensor indices)
aten::nanmedian.names_dim_values(Tensor self, str dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)'''
pass
class ATenNanquantileSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::nanquantile(Tensor self, Tensor q, int? dim=None, bool keepdim=False, *, str interpolation="linear") -> (Tensor)
aten::nanquantile.scalar(Tensor self, float q, int? dim=None, bool keepdim=False, *, str interpolation="linear") -> (Tensor)'''
pass
class ATenNansumSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::nansum(Tensor self, int[1] dim=[], bool keepdim=False, *, int? dtype=None) -> (Tensor)'''
pass
class ATenNarrowSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::narrow(Tensor(a) self, int dim, int start, int length) -> (Tensor(a))
aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> (Tensor(a))'''
pass
class ATenNarrowCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::narrow_copy(Tensor self, int dim, int start, int length) -> (Tensor)
aten::narrow_copy.SymInt(Tensor self, int dim, int start, SymInt length) -> (Tensor)'''
pass
class ATenNativeBatchNormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)
aten::native_batch_norm.out(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, *, Tensor(a!) out, Tensor(b!) save_mean, Tensor(c!) save_invstd) -> (Tensor(a!), Tensor(b!), Tensor(c!))'''
pass
class ATenNativeChannelShuffleSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::native_channel_shuffle(Tensor self, int groups) -> (Tensor)'''
pass
class ATenNativeDropoutSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::native_dropout(Tensor input, float p, bool? train) -> (Tensor, Tensor)'''
pass
class ATenNativeGroupNormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::native_group_norm(Tensor input, Tensor? weight, Tensor? bias, int N, int C, int HxW, int group, float eps) -> (Tensor, Tensor, Tensor)'''
pass
class ATenNativeLayerNormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::native_layer_norm(Tensor input, int[] normalized_shape, Tensor? weight, Tensor? bias, float eps) -> (Tensor, Tensor, Tensor)'''
pass
class ATenNativeMultiHeadAttentionSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_native_multi_head_attention(Tensor query, Tensor key, Tensor value, int embed_dim, int num_head, Tensor qkv_weight, Tensor qkv_bias, Tensor proj_weight, Tensor proj_bias, Tensor? mask=None, bool need_weights=True, bool average_attn_weights=True) -> (Tensor, Tensor)'''
pass
class ATenNativeNormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::native_norm(Tensor self, Scalar p=2) -> (Tensor)
aten::native_norm.ScalarOpt_dim_dtype(Tensor self, Scalar? p, int[1] dim, bool keepdim, int? dtype) -> (Tensor)'''
pass
class ATenNcfUnsqueezeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_ncf_unsqueeze(Tensor(a) self, int ndim) -> (Tensor(a))'''
pass
class ATenNcfViewSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_ncf_view(Tensor(a) self, int[] input_shape, int normalized_ndim) -> (Tensor(a))'''
pass
class ATenNeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::ne.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::ne.Scalar(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenNegSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::neg(Tensor self) -> (Tensor)'''
pass
class ATenNegViewSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_neg_view(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenNegViewCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_neg_view_copy(Tensor self) -> (Tensor)'''
pass
class ATenNegativeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::negative(Tensor self) -> (Tensor)'''
pass
class ATenNestedFromPaddedSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_nested_from_padded(Tensor padded, Tensor cpu_nested_shape_example, bool fuse_transform_0213=False) -> (Tensor)'''
pass
class ATenNestedFromPaddedAndNestedExampleSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_nested_from_padded_and_nested_example(Tensor padded, Tensor nt_example) -> (Tensor)'''
pass
class ATenNestedTensorSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::nested_tensor(Tensor[] list, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor)'''
pass
class ATenNestedTensorFromMaskSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_nested_tensor_from_mask(Tensor t, Tensor mask) -> (Tensor)'''
pass
class ATenNestedTensorLayerNormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_nested_tensor_layer_norm(Tensor self, Tensor? weight, Tensor? bias, float eps) -> (Tensor)'''
pass
class ATenNewEmptySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::new_empty(Tensor self, int[] size, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor)'''
pass
class ATenNewEmptyStridedSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::new_empty_strided(Tensor self, int[] size, int[] stride, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor)'''
pass
class ATenNewFullSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::new_full(Tensor self, int[] size, Scalar fill_value, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor)'''
pass
class ATenNewOnesSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::new_ones(Tensor self, int[] size, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor)'''
pass
class ATenNewZerosSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::new_zeros(Tensor self, int[] size, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor)'''
pass
class ATenNewZerosWithSameFeatureMetaSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_new_zeros_with_same_feature_meta(Tensor self, Tensor other, *, int self_num_batch_dims=0) -> (Tensor)'''
pass
class ATenNextafterSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::nextafter(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenNllLossSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::nll_loss(Tensor self, Tensor target, Tensor? weight=None, int reduction=1, int ignore_index=-100) -> (Tensor)'''
pass
class ATenNllLoss2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::nll_loss2d(Tensor self, Tensor target, Tensor? weight=None, int reduction=1, int ignore_index=-100) -> (Tensor)'''
pass
class ATenNllLossNdSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::nll_loss_nd(Tensor self, Tensor target, Tensor? weight=None, int reduction=1, int ignore_index=-100) -> (Tensor)'''
pass
class ATenNonzeroSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::nonzero(Tensor self) -> (Tensor)'''
pass
class ATenNonzeroNumpySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::nonzero_numpy(Tensor self) -> (Tensor[])'''
pass
class ATenNormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::norm.Scalar(Tensor self, Scalar p=2) -> (Tensor)
aten::norm.ScalarOpt_dim(Tensor self, Scalar? p, int[1] dim, bool keepdim=False) -> (Tensor)
aten::norm.names_ScalarOpt_dim(Tensor self, Scalar? p, str[1] dim, bool keepdim=False) -> (Tensor)
aten::norm.ScalarOpt_dim_dtype(Tensor self, Scalar? p, int[1] dim, bool keepdim, *, int dtype) -> (Tensor)
aten::norm.ScalarOpt_dtype(Tensor self, Scalar? p, *, int dtype) -> (Tensor)
aten::norm.names_ScalarOpt_dim_dtype(Tensor self, Scalar? p, str[1] dim, bool keepdim, *, int dtype) -> (Tensor)'''
pass
class ATenNormExceptDimSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::norm_except_dim(Tensor v, int pow=2, int dim=0) -> (Tensor)'''
pass
class ATenNormalSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::normal.Tensor_float(Tensor mean, float std=1., *, Generator? generator=None) -> (Tensor)
aten::normal.float_Tensor(float mean, Tensor std, *, Generator? generator=None) -> (Tensor)
aten::normal.Tensor_Tensor(Tensor mean, Tensor std, *, Generator? generator=None) -> (Tensor)
aten::normal.functional(Tensor self, float mean=0., float std=1., *, Generator? generator=None) -> (Tensor)'''
pass
class ATenNotEqualSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::not_equal.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::not_equal.Tensor(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenNuclearNormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::nuclear_norm(Tensor self, bool keepdim=False) -> (Tensor)
aten::nuclear_norm.dim(Tensor self, int[2] dim, bool keepdim=False) -> (Tensor)'''
pass
class ATenNumpyTSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::numpy_T(Tensor(a) self) -> (Tensor(a))
aten::numpy_T.a(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenOneHotSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::one_hot(Tensor self, int num_classes=-1) -> (Tensor)'''
pass
class ATenOnesLikeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::ones_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor)'''
pass
class ATenOrSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::__or__.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::__or__.Tensor(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenOrgqrSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::orgqr(Tensor self, Tensor input2) -> (Tensor)'''
pass
class ATenOrmqrSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::ormqr(Tensor self, Tensor input2, Tensor input3, bool left=True, bool transpose=False) -> (Tensor)'''
pass
class ATenOuterSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::outer(Tensor self, Tensor vec2) -> (Tensor)'''
pass
class ATenPackPaddedSequenceSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_pack_padded_sequence(Tensor input, Tensor lengths, bool batch_first) -> (Tensor, Tensor)'''
pass
class ATenPackSequenceSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_pack_sequence(Tensor output, Tensor batch_sizes, Tensor? sorted_indices, Tensor? unsorted_indices) -> (Tensor, Tensor, Tensor?, Tensor?)'''
pass
class ATenPadSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::pad(Tensor self, int[] pad, str mode="constant", float? value=None) -> (Tensor)'''
pass
class ATenPadCircularSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_pad_circular(Tensor self, int[] pad) -> (Tensor)'''
pass
class ATenPadEnumSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_pad_enum(Tensor self, int[] pad, int mode, float? value=None) -> (Tensor)'''
pass
class ATenPadPackedSequenceSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_pad_packed_sequence(Tensor data, Tensor batch_sizes, bool batch_first, Scalar padding_value, int total_length) -> (Tensor, Tensor)'''
pass
class ATenPadSequenceSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::pad_sequence(Tensor[] sequences, bool batch_first=False, float padding_value=0.) -> (Tensor)'''
pass
class ATenPairwiseDistanceSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::pairwise_distance(Tensor x1, Tensor x2, float p=2., float eps=9.9999999999999995e-07, bool keepdim=False) -> (Tensor)'''
pass
class ATenPdistSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::pdist(Tensor self, float p=2.) -> (Tensor)'''
pass
class ATenPermuteSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::permute(Tensor(a) self, int[] dims) -> (Tensor(a))'''
pass
class ATenPermuteCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::permute_copy(Tensor self, int[] dims) -> (Tensor)'''
pass
class ATenPinMemorySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::pin_memory(Tensor(a) self, Device? device=None) -> (Tensor(a))
aten::_pin_memory(Tensor self, Device? device=None) -> (Tensor)'''
pass
class ATenPinverseSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::pinverse(Tensor self, float rcond=1.0000000000000001e-15) -> (Tensor)'''
pass
class ATenPixelShuffleSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::pixel_shuffle(Tensor self, int upscale_factor) -> (Tensor)'''
pass
class ATenPixelUnshuffleSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::pixel_unshuffle(Tensor self, int downscale_factor) -> (Tensor)'''
pass
class ATenPoissonSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::poisson(Tensor self, Generator? generator=None) -> (Tensor)'''
pass
class ATenPoissonNllLossSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::poisson_nll_loss(Tensor input, Tensor target, bool log_input, bool full, float eps, int reduction) -> (Tensor)'''
pass
class ATenPolarSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::polar(Tensor abs, Tensor angle) -> (Tensor)'''
pass
class ATenPolygammaSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::polygamma(int n, Tensor self) -> (Tensor)'''
pass
class ATenPositiveSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::positive(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenPowSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::pow.Tensor_Tensor(Tensor self, Tensor exponent) -> (Tensor)
aten::pow.Tensor_Scalar(Tensor self, Scalar exponent) -> (Tensor)
aten::pow.Scalar(Scalar self, Tensor exponent) -> (Tensor)'''
pass
class ATenPreluSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::prelu(Tensor self, Tensor weight) -> (Tensor)'''
pass
class ATenProdSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::prod(Tensor self, *, int? dtype=None) -> (Tensor)
aten::prod.dim_int(Tensor self, int dim, bool keepdim=False, *, int? dtype=None) -> (Tensor)
aten::prod.dim_Dimname(Tensor self, str dim, bool keepdim=False, *, int? dtype=None) -> (Tensor)'''
pass
class ATenPutSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::put(Tensor self, Tensor index, Tensor source, bool accumulate=False) -> (Tensor)'''
pass
class ATenQPerChannelScalesSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::q_per_channel_scales(Tensor self) -> (Tensor)'''
pass
class ATenQPerChannelZeroPointsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::q_per_channel_zero_points(Tensor self) -> (Tensor)'''
pass
class ATenQrSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::qr(Tensor self, bool some=True) -> (Tensor Q, Tensor R)
aten::qr.Q(Tensor self, bool some=True, *, Tensor(a!) Q, Tensor(b!) R) -> (Tensor(a!) Q, Tensor(b!) R)'''
pass
class ATenQuantileSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::quantile(Tensor self, Tensor q, int? dim=None, bool keepdim=False, *, str interpolation="linear") -> (Tensor)
aten::quantile.scalar(Tensor self, float q, int? dim=None, bool keepdim=False, *, str interpolation="linear") -> (Tensor)'''
pass
class ATenQuantizePerChannelSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::quantize_per_channel(Tensor self, Tensor scales, Tensor zero_points, int axis, int dtype) -> (Tensor)'''
pass
class ATenQuantizePerTensorSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::quantize_per_tensor(Tensor self, float scale, int zero_point, int dtype) -> (Tensor)
aten::quantize_per_tensor.tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, int dtype) -> (Tensor)
aten::quantize_per_tensor.tensors(Tensor[] tensors, Tensor scales, Tensor zero_points, int dtype) -> (Tensor[])'''
pass
class ATenQuantizePerTensorDynamicSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::quantize_per_tensor_dynamic(Tensor self, int dtype, bool reduce_range) -> (Tensor)'''
pass
class ATenQuantizedBatchNormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::quantized_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor var, float eps, float output_scale, int output_zero_point) -> (Tensor)'''
pass
class ATenQuantizedGruSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::quantized_gru.input(Tensor input, Tensor hx, __torch__.torch.classes.rnn.CellParamsBase[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)
aten::quantized_gru.data(Tensor data, Tensor batch_sizes, Tensor hx, __torch__.torch.classes.rnn.CellParamsBase[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)
aten::quantized_gru.input_legacy(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)
aten::quantized_gru.data_legacy(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)'''
pass
class ATenQuantizedGruCellSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::quantized_gru_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> (Tensor)'''
pass
class ATenQuantizedLstmSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::quantized_lstm.input(Tensor input, Tensor[] hx, __torch__.torch.classes.rnn.CellParamsBase[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first, *, int? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor)
aten::quantized_lstm.data(Tensor data, Tensor batch_sizes, Tensor[] hx, __torch__.torch.classes.rnn.CellParamsBase[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, *, int? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor)
aten::quantized_lstm.input_legacy(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first, *, int? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor)
aten::quantized_lstm.data_legacy(Tensor data, Tensor batch_sizes, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, *, int? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor)'''
pass
class ATenQuantizedLstmCellSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::quantized_lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> (Tensor, Tensor)'''
pass
class ATenQuantizedMaxPool1dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::quantized_max_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=[0], int[1] dilation=[1], bool ceil_mode=False) -> (Tensor)'''
pass
class ATenQuantizedMaxPool2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::quantized_max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], int[2] dilation=[1, 1], bool ceil_mode=False) -> (Tensor)'''
pass
class ATenQuantizedRnnReluCellSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::quantized_rnn_relu_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> (Tensor)'''
pass
class ATenQuantizedRnnTanhCellSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::quantized_rnn_tanh_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> (Tensor)'''
pass
class ATenRad2degSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::rad2deg(Tensor self) -> (Tensor)'''
pass
class ATenRandLikeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::rand_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor)'''
pass
class ATenRandintLikeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::randint_like(Tensor self, int high, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor)
aten::randint_like.low_dtype(Tensor self, int low, int high, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor)'''
pass
class ATenRandnLikeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::randn_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor)'''
pass
class ATenRandomSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::random.from_functional(Tensor self, int from, int? to, *, Generator? generator=None) -> (Tensor)
aten::random.to_functional(Tensor self, int to, *, Generator? generator=None) -> (Tensor)
aten::random.functional(Tensor self, *, Generator? generator=None) -> (Tensor)'''
pass
class ATenRavelSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::ravel(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenRealSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::real(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenReciprocalSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::reciprocal(Tensor self) -> (Tensor)'''
pass
class ATenRefineNamesSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::refine_names(Tensor(a) self, str[] names) -> (Tensor(a))'''
pass
class ATenReflectionPad1dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::reflection_pad1d(Tensor self, int[2] padding) -> (Tensor)'''
pass
class ATenReflectionPad2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::reflection_pad2d(Tensor self, int[4] padding) -> (Tensor)'''
pass
class ATenReflectionPad3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::reflection_pad3d(Tensor self, int[6] padding) -> (Tensor)'''
pass
class ATenReluSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::relu(Tensor self) -> (Tensor)'''
pass
class ATenRelu6Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::relu6(Tensor self) -> (Tensor)'''
pass
class ATenRemainderSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::remainder.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::remainder.Scalar_Tensor(Scalar self, Tensor other) -> (Tensor)
aten::remainder.Scalar(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenRemoveBatchDimSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_remove_batch_dim(Tensor self, int level, int batch_size, int out_dim) -> (Tensor)'''
pass
class ATenRenameSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::rename(Tensor(a) self, str[]? names) -> (Tensor(a))'''
pass
class ATenRenormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::renorm(Tensor self, Scalar p, int dim, Scalar maxnorm) -> (Tensor)'''
pass
class ATenRepeatSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::repeat(Tensor self, int[] repeats) -> (Tensor)'''
pass
class ATenRepeatInterleaveSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::repeat_interleave.Tensor(Tensor repeats, *, int? output_size=None) -> (Tensor)
aten::repeat_interleave.self_Tensor(Tensor self, Tensor repeats, int? dim=None, *, int? output_size=None) -> (Tensor)
aten::repeat_interleave.self_int(Tensor self, int repeats, int? dim=None, *, int? output_size=None) -> (Tensor)'''
pass
class ATenReplicationPad1dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::replication_pad1d(Tensor self, int[2] padding) -> (Tensor)'''
pass
class ATenReplicationPad2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::replication_pad2d(Tensor self, int[4] padding) -> (Tensor)'''
pass
class ATenReplicationPad3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::replication_pad3d(Tensor self, int[6] padding) -> (Tensor)'''
pass
class ATenReshapeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::reshape(Tensor(a) self, int[] shape) -> (Tensor(a))'''
pass
class ATenReshapeAliasSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_reshape_alias(Tensor(a) self, int[] size, int[] stride) -> (Tensor(a))'''
pass
class ATenReshapeAliasCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_reshape_alias_copy(Tensor self, int[] size, int[] stride) -> (Tensor)'''
pass
class ATenReshapeAsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::reshape_as(Tensor(a) self, Tensor other) -> (Tensor(a))'''
pass
class ATenReshapeFromTensorSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_reshape_from_tensor(Tensor self, Tensor shape) -> (Tensor)'''
pass
class ATenResizeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::resize.functional(Tensor self, int[] size, *, int? memory_format=None) -> (Tensor)'''
pass
class ATenResizeAsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::resize_as.functional(Tensor self, Tensor the_template, *, int? memory_format=None) -> (Tensor)'''
pass
class ATenResizeOutputSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_resize_output.functional(Tensor self, int[] size, Device device) -> (Tensor)'''
pass
class ATenResolveConjSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::resolve_conj(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenResolveNegSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::resolve_neg(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenRnnReluSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::rnn_relu.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)
aten::rnn_relu.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)'''
pass
class ATenRnnReluCellSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::rnn_relu_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor)'''
pass
class ATenRnnTanhSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::rnn_tanh.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)
aten::rnn_tanh.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)'''
pass
class ATenRnnTanhCellSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::rnn_tanh_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor)'''
pass
class ATenRollSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)'''
pass
class ATenRot90Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::rot90(Tensor self, int k=1, int[] dims=[0, 1]) -> (Tensor)'''
pass
class ATenRoundSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::round(Tensor self) -> (Tensor)
aten::round.decimals(Tensor self, *, int decimals) -> (Tensor)'''
pass
class ATenRowIndicesSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::row_indices(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenRowIndicesCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::row_indices_copy(Tensor self) -> (Tensor)'''
pass
class ATenRowStackSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::row_stack(Tensor[] tensors) -> (Tensor)'''
pass
class ATenRowwisePruneSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_rowwise_prune(Tensor weight, Tensor mask, int compressed_indices_dtype) -> (Tensor, Tensor)'''
pass
class ATenRreluSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::rrelu(Tensor self, Scalar lower=0.125, Scalar upper=0.33333333333333331, bool training=False, Generator? generator=None) -> (Tensor)'''
pass
class ATenRreluWithNoiseSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::rrelu_with_noise(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.33333333333333331, bool training=False, Generator? generator=None) -> (Tensor)'''
pass
class ATenRshiftSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::__rshift__.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::__rshift__.Tensor(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenRsqrtSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::rsqrt(Tensor self) -> (Tensor)'''
pass
class ATenRsubSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::rsub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> (Tensor)
aten::rsub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor)'''
pass
class ATenSampleDirichletSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_sample_dirichlet(Tensor self, Generator? generator=None) -> (Tensor)'''
pass
class ATenScatterSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::scatter.src(Tensor self, int dim, Tensor index, Tensor src) -> (Tensor)
aten::scatter.value(Tensor self, int dim, Tensor index, Scalar value) -> (Tensor)
aten::scatter.reduce(Tensor self, int dim, Tensor index, Tensor src, *, str reduce) -> (Tensor)
aten::scatter.value_reduce(Tensor self, int dim, Tensor index, Scalar value, *, str reduce) -> (Tensor)
aten::scatter.dimname_src(Tensor self, str dim, Tensor index, Tensor src) -> (Tensor)
aten::scatter.dimname_value(Tensor self, str dim, Tensor index, Scalar value) -> (Tensor)'''
pass
class ATenScatterAddSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::scatter_add(Tensor self, int dim, Tensor index, Tensor src) -> (Tensor)
aten::scatter_add.dimname(Tensor self, str dim, Tensor index, Tensor src) -> (Tensor)'''
pass
class ATenScatterReduceSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::scatter_reduce.two(Tensor self, int dim, Tensor index, Tensor src, str reduce, *, bool include_self=True) -> (Tensor)'''
pass
class ATenSearchsortedSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::searchsorted.Tensor(Tensor sorted_sequence, Tensor self, *, bool out_int32=False, bool right=False, str? side=None, Tensor? sorter=None) -> (Tensor)
aten::searchsorted.Scalar(Tensor sorted_sequence, Scalar self, *, bool out_int32=False, bool right=False, str? side=None, Tensor? sorter=None) -> (Tensor)'''
pass
class ATenSegmentReduceSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::segment_reduce(Tensor data, str reduce, *, Tensor? lengths=None, Tensor? indices=None, int axis=0, bool unsafe=False, Scalar? initial=None) -> (Tensor)'''
pass
class ATenSelectSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))
aten::select.Dimname(Tensor(a) self, str dim, int index) -> (Tensor(a))'''
pass
class ATenSelectCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::select_copy.int(Tensor self, int dim, int index) -> (Tensor)'''
pass
class ATenSelectScatterSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::select_scatter(Tensor self, Tensor src, int dim, int index) -> (Tensor)'''
pass
class ATenSeluSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::selu(Tensor self) -> (Tensor)'''
pass
class ATenSetSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::set.source_Storage_functional(Tensor self, Storage source) -> (Tensor)
aten::set.source_Storage_storage_offset_functional(Tensor self, Storage source, int storage_offset, int[] size, int[] stride=[]) -> (Tensor)
aten::set.source_Tensor_functional(Tensor self, Tensor source) -> (Tensor)
aten::set.functional(Tensor self) -> (Tensor)'''
pass
class ATenSgnSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::sgn(Tensor self) -> (Tensor)'''
pass
class ATenShapeAsTensorSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_shape_as_tensor(Tensor self) -> (Tensor)'''
pass
class ATenSigmoidSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::sigmoid(Tensor self) -> (Tensor)'''
pass
class ATenSignSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::sign(Tensor self) -> (Tensor)'''
pass
class ATenSignbitSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::signbit(Tensor self) -> (Tensor)'''
pass
class ATenSiluSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::silu(Tensor self) -> (Tensor)'''
pass
class ATenSinSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::sin(Tensor self) -> (Tensor)'''
pass
class ATenSincSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::sinc(Tensor self) -> (Tensor)'''
pass
class ATenSinhSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::sinh(Tensor self) -> (Tensor)'''
pass
class ATenSizeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::size(Tensor self) -> (int[])'''
pass
class ATenSliceSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::slice.Tensor(Tensor(a) self, int dim=0, int? start=None, int? end=None, int step=1) -> (Tensor(a))'''
pass
class ATenSliceCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::slice_copy.Tensor(Tensor self, int dim=0, int? start=None, int? end=None, int step=1) -> (Tensor)'''
pass
class ATenSliceScatterSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::slice_scatter(Tensor self, Tensor src, int dim=0, int? start=None, int? end=None, int step=1) -> (Tensor)'''
pass
class ATenSlogdetSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::slogdet(Tensor self) -> (Tensor sign, Tensor logabsdet)'''
pass
class ATenSlowConv3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::slow_conv3d(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias=None, int[3] stride=[1, 1, 1], int[3] padding=[0, 0, 0]) -> (Tensor)'''
pass
class ATenSlowConvDilated2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::slow_conv_dilated2d(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=[1, 1], int[2] padding=[0, 0], int[2] dilation=[1, 1]) -> (Tensor)'''
pass
class ATenSlowConvDilated3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::slow_conv_dilated3d(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias=None, int[3] stride=[1, 1, 1], int[3] padding=[0, 0, 0], int[3] dilation=[1, 1, 1]) -> (Tensor)'''
pass
class ATenSlowConvTranspose2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::slow_conv_transpose2d(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=[1, 1], int[2] padding=[0, 0], int[2] output_padding=[0, 0], int[2] dilation=[1, 1]) -> (Tensor)'''
pass
class ATenSlowConvTranspose3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::slow_conv_transpose3d(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias=None, int[3] stride=[1, 1, 1], int[3] padding=[0, 0, 0], int[3] output_padding=[0, 0, 0], int[3] dilation=[1, 1, 1]) -> (Tensor)'''
pass
class ATenSmmSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::smm(Tensor self, Tensor mat2) -> (Tensor)'''
pass
class ATenSmoothL1LossSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::smooth_l1_loss(Tensor self, Tensor target, int reduction=1, float beta=1.) -> (Tensor)'''
pass
class ATenSobolEngineDrawSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_sobol_engine_draw(Tensor quasi, int n, Tensor sobolstate, int dimension, int num_generated, int? dtype) -> (Tensor, Tensor)'''
pass
class ATenSoftMarginLossSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::soft_margin_loss(Tensor self, Tensor target, int reduction=1) -> (Tensor)'''
pass
class ATenSoftmaxSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::softmax.int(Tensor self, int dim, int? dtype=None) -> (Tensor)
aten::softmax.Dimname(Tensor self, str dim, *, int? dtype=None) -> (Tensor)
aten::_softmax(Tensor self, int dim, bool half_to_float) -> (Tensor)'''
pass
class ATenSoftmaxBackwardDataSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_softmax_backward_data(Tensor grad_output, Tensor output, int dim, int input_dtype) -> (Tensor)'''
pass
class ATenSoftplusSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::softplus(Tensor self, Scalar beta=1, Scalar threshold=20) -> (Tensor)'''
pass
class ATenSoftshrinkSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::softshrink(Tensor self, Scalar lambd=0.5) -> (Tensor)'''
pass
class ATenSortSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::sort.stable(Tensor self, *, bool? stable, int dim=-1, bool descending=False) -> (Tensor values, Tensor indices)
aten::sort.values_stable(Tensor self, *, bool? stable, int dim=-1, bool descending=False, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
aten::sort(Tensor self, int dim=-1, bool descending=False) -> (Tensor values, Tensor indices)
aten::sort.values(Tensor self, int dim=-1, bool descending=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
aten::sort.dimname(Tensor self, str dim, bool descending=False) -> (Tensor values, Tensor indices)
aten::sort.dimname_values(Tensor self, str dim, bool descending=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
aten::sort.dimname_stable(Tensor self, *, bool? stable, str dim, bool descending=False) -> (Tensor values, Tensor indices)
aten::sort.dimname_values_stable(Tensor self, *, bool? stable, str dim, bool descending=False, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)'''
pass
class ATenSortedSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::sorted.Tensor(Tensor[](a) input) -> (Tensor[])'''
pass
class ATenSpecialDigammaSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_digamma(Tensor self) -> (Tensor)'''
pass
class ATenSpecialEntrSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_entr(Tensor self) -> (Tensor)'''
pass
class ATenSpecialErfSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_erf(Tensor self) -> (Tensor)'''
pass
class ATenSpecialErfcSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_erfc(Tensor self) -> (Tensor)'''
pass
class ATenSpecialErfcxSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_erfcx(Tensor self) -> (Tensor)'''
pass
class ATenSpecialErfinvSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_erfinv(Tensor self) -> (Tensor)'''
pass
class ATenSpecialExp2Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_exp2(Tensor self) -> (Tensor)'''
pass
class ATenSpecialExpitSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_expit(Tensor self) -> (Tensor)'''
pass
class ATenSpecialExpm1Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_expm1(Tensor self) -> (Tensor)'''
pass
class ATenSpecialGammaincSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_gammainc(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenSpecialGammainccSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_gammaincc(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenSpecialGammalnSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_gammaln(Tensor self) -> (Tensor)'''
pass
class ATenSpecialI0Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_i0(Tensor self) -> (Tensor)'''
pass
class ATenSpecialI0eSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_i0e(Tensor self) -> (Tensor)'''
pass
class ATenSpecialI1Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_i1(Tensor self) -> (Tensor)'''
pass
class ATenSpecialI1eSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_i1e(Tensor self) -> (Tensor)'''
pass
class ATenSpecialLog1pSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_log1p(Tensor self) -> (Tensor)'''
pass
class ATenSpecialLogNdtrSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_log_ndtr(Tensor self) -> (Tensor)'''
pass
class ATenSpecialLogSoftmaxSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_log_softmax(Tensor self, int dim, *, int? dtype=None) -> (Tensor)'''
pass
class ATenSpecialLogitSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_logit(Tensor self, float? eps=None) -> (Tensor)'''
pass
class ATenSpecialLogsumexpSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_logsumexp(Tensor self, int[1] dim, bool keepdim=False) -> (Tensor)'''
pass
class ATenSpecialMultigammalnSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_multigammaln(Tensor self, int p) -> (Tensor)'''
pass
class ATenSpecialNdtrSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_ndtr(Tensor self) -> (Tensor)'''
pass
class ATenSpecialNdtriSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_ndtri(Tensor self) -> (Tensor)'''
pass
class ATenSpecialPolygammaSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_polygamma(int n, Tensor self) -> (Tensor)'''
pass
class ATenSpecialPsiSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_psi(Tensor self) -> (Tensor)'''
pass
class ATenSpecialRoundSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_round(Tensor self, *, int decimals=0) -> (Tensor)'''
pass
class ATenSpecialSincSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_sinc(Tensor self) -> (Tensor)'''
pass
class ATenSpecialSoftmaxSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_softmax(Tensor self, int dim, int? dtype=None) -> (Tensor)'''
pass
class ATenSpecialXlog1pySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_xlog1py(Tensor self, Tensor other) -> (Tensor)
aten::special_xlog1py.self_scalar(Scalar self, Tensor other) -> (Tensor)
aten::special_xlog1py.other_scalar(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenSpecialXlogySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_xlogy(Tensor self, Tensor other) -> (Tensor)
aten::special_xlogy.self_scalar(Scalar self, Tensor other) -> (Tensor)
aten::special_xlogy.other_scalar(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenSpecialZetaSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::special_zeta(Tensor self, Tensor other) -> (Tensor)
aten::special_zeta.self_scalar(Scalar self, Tensor other) -> (Tensor)
aten::special_zeta.other_scalar(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenSplitSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::split.Tensor(Tensor(a -> *) self, int split_size, int dim=0) -> (Tensor[])
aten::split.sizes(Tensor(a -> *) self, int[] split_size, int dim=0) -> (Tensor[])
aten::split(Tensor(a -> *) self, int[] split_sizes, int dim=0) -> (Tensor[])'''
pass
class ATenSplitCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::split_copy.Tensor(Tensor self, int split_size, int dim=0) -> (Tensor[])'''
pass
class ATenSplitWithSizesSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::split_with_sizes(Tensor(a -> *) self, int[] split_sizes, int dim=0) -> (Tensor[])'''
pass
class ATenSplitWithSizesCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::split_with_sizes_copy(Tensor self, int[] split_sizes, int dim=0) -> (Tensor[])'''
pass
class ATenSqrtSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::sqrt(Tensor self) -> (Tensor)'''
pass
class ATenSquareSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::square(Tensor self) -> (Tensor)'''
pass
class ATenSqueezeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::squeeze(Tensor(a) self) -> (Tensor(a))
aten::squeeze.dim(Tensor(a) self, int dim) -> (Tensor(a))
aten::squeeze.dimname(Tensor(a) self, str dim) -> (Tensor(a))'''
pass
class ATenSqueezeCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::squeeze_copy(Tensor self) -> (Tensor)
aten::squeeze_copy.dim(Tensor self, int dim) -> (Tensor)'''
pass
class ATenSspaddmmSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::sspaddmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> (Tensor)'''
pass
class ATenStackSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::stack(Tensor[] tensors, int dim=0) -> (Tensor)
aten::_stack(Tensor[] tensors, int dim=0) -> (Tensor)'''
pass
class ATenStandardGammaSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_standard_gamma(Tensor self, Generator? generator=None) -> (Tensor)'''
pass
class ATenStdSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::std(Tensor self, bool unbiased=True) -> (Tensor)
aten::std.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor)
aten::std.names_dim(Tensor self, str[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor)
aten::std.correction(Tensor self, int[1]? dim, *, int? correction, bool keepdim=False) -> (Tensor)
aten::std.correction_names(Tensor self, str[1] dim, *, int? correction, bool keepdim=False) -> (Tensor)'''
pass
class ATenStdMeanSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::std_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor)
aten::std_mean.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)
aten::std_mean.names_dim(Tensor self, str[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)
aten::std_mean.correction(Tensor self, int[1]? dim, *, int? correction, bool keepdim=False) -> (Tensor, Tensor)
aten::std_mean.correction_names(Tensor self, str[1] dim, *, int? correction, bool keepdim=False) -> (Tensor, Tensor)'''
pass
class ATenStftSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::stft(Tensor self, int n_fft, int? hop_length=None, int? win_length=None, Tensor? window=None, bool normalized=False, bool? onesided=None, bool? return_complex=None) -> (Tensor)
aten::stft.center(Tensor self, int n_fft, int? hop_length=None, int? win_length=None, Tensor? window=None, bool center=True, str pad_mode="reflect", bool normalized=False, bool? onesided=None, bool? return_complex=None) -> (Tensor)'''
pass
class ATenSubSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::sub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> (Tensor)
aten::sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor)'''
pass
class ATenSubtractSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::subtract.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> (Tensor)
aten::subtract.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor)'''
pass
class ATenSumSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, int? dtype=None) -> (Tensor)
aten::sum(Tensor self, *, int? dtype=None) -> (Tensor)
aten::sum.dim_DimnameList(Tensor self, str[1] dim, bool keepdim=False, *, int? dtype=None) -> (Tensor)'''
pass
class ATenSumToSizeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::sum_to_size(Tensor self, int[] size) -> (Tensor)'''
pass
class ATenSvdSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::svd(Tensor self, bool some=True, bool compute_uv=True) -> (Tensor U, Tensor S, Tensor V)
aten::svd.U(Tensor self, bool some=True, bool compute_uv=True, *, Tensor(a!) U, Tensor(b!) S, Tensor(c!) V) -> (Tensor(a!) U, Tensor(b!) S, Tensor(c!) V)'''
pass
class ATenSwapaxesSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::swapaxes(Tensor(a) self, int axis0, int axis1) -> (Tensor(a))'''
pass
class ATenSwapdimsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::swapdims(Tensor(a) self, int dim0, int dim1) -> (Tensor(a))'''
pass
class ATenSymeigSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::symeig(Tensor self, bool eigenvectors=False, bool upper=True) -> (Tensor eigenvalues, Tensor eigenvectors)
aten::symeig.e(Tensor self, bool eigenvectors=False, bool upper=True, *, Tensor(a!) e, Tensor(b!) V) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors)'''
pass
class ATenSymeigHelperSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_symeig_helper(Tensor self, bool eigenvectors, bool upper) -> (Tensor, Tensor)'''
pass
class ATenTSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::t(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenTCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::t_copy(Tensor self) -> (Tensor)'''
pass
class ATenTakeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::take(Tensor self, Tensor index) -> (Tensor)'''
pass
class ATenTakeAlongDimSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::take_along_dim(Tensor self, Tensor indices, int? dim=None) -> (Tensor)'''
pass
class ATenTanSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::tan(Tensor self) -> (Tensor)'''
pass
class ATenTanhSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::tanh(Tensor self) -> (Tensor)'''
pass
class ATenTensorSplitSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::tensor_split.sections(Tensor(a -> *) self, int sections, int dim=0) -> (Tensor[])
aten::tensor_split.indices(Tensor(a -> *) self, int[] indices, int dim=0) -> (Tensor[])
aten::tensor_split.tensor_indices_or_sections(Tensor(a -> *) self, Tensor tensor_indices_or_sections, int dim=0) -> (Tensor[])'''
pass
class ATenTensorToListSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_tensor_to_list(Tensor self) -> (int[])'''
pass
class ATenTensordotSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::tensordot(Tensor self, Tensor other, int[] dims_self, int[] dims_other) -> (Tensor)'''
pass
class ATenThnnConv2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::thnn_conv2d(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=[1, 1], int[2] padding=[0, 0]) -> (Tensor)'''
pass
class ATenThnnFusedGruCellSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_thnn_fused_gru_cell(Tensor input_gates, Tensor hidden_gates, Tensor hx, Tensor? input_bias=None, Tensor? hidden_bias=None) -> (Tensor, Tensor)'''
pass
class ATenThnnFusedLstmCellSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_thnn_fused_lstm_cell(Tensor input_gates, Tensor hidden_gates, Tensor cx, Tensor? input_bias=None, Tensor? hidden_bias=None) -> (Tensor, Tensor, Tensor)'''
pass
class ATenThnnFusedLstmCellBackwardImplSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_thnn_fused_lstm_cell_backward_impl(Tensor? grad_hy, Tensor? grad_cy, Tensor cx, Tensor cy, Tensor workspace, bool has_bias) -> (Tensor, Tensor, Tensor)'''
pass
class ATenThresholdSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::threshold(Tensor self, Scalar threshold, Scalar value) -> (Tensor)'''
pass
class ATenTileSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::tile(Tensor self, int[] dims) -> (Tensor)'''
pass
class ATenToSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::to.device(Tensor(a) self, Device device, int dtype, bool non_blocking=False, bool copy=False, int? memory_format=None) -> (Tensor(a))
aten::to.dtype(Tensor(a) self, int dtype, bool non_blocking=False, bool copy=False, int? memory_format=None) -> (Tensor(a))
aten::to.other(Tensor(a) self, Tensor other, bool non_blocking=False, bool copy=False, int? memory_format=None) -> (Tensor(a))
aten::to.dtype_layout(Tensor(a) self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, bool copy=False, int? memory_format=None) -> (Tensor(a))
aten::to.prim_Device(Tensor(a) self, Device? device, int? dtype=None, bool non_blocking=False, bool copy=False) -> (Tensor(b|a))
aten::to.prim_dtype(Tensor(a) self, int? dtype=None, bool non_blocking=False, bool copy=False) -> (Tensor(b|a))
aten::to.prim_other(Tensor(a) self, bool non_blocking=False, bool copy=False) -> (Tensor(b|a))'''
pass
class ATenToCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_to_copy(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, int? memory_format=None) -> (Tensor)'''
pass
class ATenToCpuSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_to_cpu(Tensor[] tensors) -> (Tensor[])'''
pass
class ATenToDenseSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_to_dense(Tensor self, int? dtype=None) -> (Tensor)
aten::to_dense(Tensor self, int? dtype=None) -> (Tensor)'''
pass
class ATenToPaddedTensorSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::to_padded_tensor(Tensor self, float padding, int[]? output_size=None) -> (Tensor)'''
pass
class ATenTopkSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::topk(Tensor self, int k, int dim=-1, bool largest=True, bool sorted=True) -> (Tensor values, Tensor indices)
aten::topk.values(Tensor self, int k, int dim=-1, bool largest=True, bool sorted=True, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)'''
pass
class ATenTraceSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::trace(Tensor self) -> (Tensor)'''
pass
class ATenTransformBiasRescaleQkvSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_transform_bias_rescale_qkv(Tensor qkv, Tensor qkv_bias, int num_heads) -> (Tensor, Tensor, Tensor)'''
pass
class ATenTransformerEncoderLayerFwdSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_transformer_encoder_layer_fwd(Tensor src, int embed_dim, int num_heads, Tensor qkv_weight, Tensor qkv_bias, Tensor proj_weight, Tensor proj_bias, bool use_gelu, bool norm_first, float eps, Tensor norm_weight_1, Tensor norm_bias_1, Tensor norm_weight_2, Tensor norm_bias_2, Tensor ffn_weight_1, Tensor ffn_bias_1, Tensor ffn_weight_2, Tensor ffn_bias_2, Tensor? mask=None) -> (Tensor)'''
pass
class ATenTransposeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::transpose.int(Tensor(a) self, int dim0, int dim1) -> (Tensor(a))
aten::transpose.Dimname(Tensor(a) self, str dim0, str dim1) -> (Tensor(a))'''
pass
class ATenTransposeCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::transpose_copy.int(Tensor self, int dim0, int dim1) -> (Tensor)'''
pass
class ATenTrapezoidSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::trapezoid.x(Tensor y, Tensor x, *, int dim=-1) -> (Tensor)
aten::trapezoid.dx(Tensor y, *, Scalar dx=1, int dim=-1) -> (Tensor)'''
pass
class ATenTrapzSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::trapz.x(Tensor y, Tensor x, *, int dim=-1) -> (Tensor)
aten::trapz.dx(Tensor y, *, float dx=1., int dim=-1) -> (Tensor)'''
pass
class ATenTriangularSolveSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::triangular_solve(Tensor self, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False) -> (Tensor solution, Tensor cloned_coefficient)
aten::triangular_solve.X(Tensor self, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False, *, Tensor(a!) X, Tensor(b!) M) -> (Tensor(a!) solution, Tensor(b!) cloned_coefficient)'''
pass
class ATenTrilSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::tril(Tensor self, int diagonal=0) -> (Tensor)'''
pass
class ATenTrilinearSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_trilinear(Tensor i1, Tensor i2, Tensor i3, int[] expand1, int[] expand2, int[] expand3, int[] sumdim, int unroll_dim=1) -> (Tensor)'''
pass
class ATenTripletMarginLossSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::triplet_margin_loss(Tensor anchor, Tensor positive, Tensor negative, float margin=1., float p=2., float eps=9.9999999999999995e-07, bool swap=False, int reduction=1) -> (Tensor)'''
pass
class ATenTriuSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::triu(Tensor self, int diagonal=0) -> (Tensor)'''
pass
class ATenTrueDivideSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::true_divide.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::true_divide.Tensor(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenTruncSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::trunc(Tensor self) -> (Tensor)'''
pass
class ATenTypeAsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::type_as(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenUnbindSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::unbind.int(Tensor(a -> *) self, int dim=0) -> (Tensor[])
aten::unbind.Dimname(Tensor(a -> *) self, str dim) -> (Tensor[])'''
pass
class ATenUnbindCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::unbind_copy.int(Tensor self, int dim=0) -> (Tensor[])'''
pass
class ATenUnflattenSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::unflatten.int(Tensor(a) self, int dim, int[] sizes, str[]? names=None) -> (Tensor(a))
aten::unflatten.Dimname(Tensor(a) self, str dim, int[] sizes, str[] names) -> (Tensor(a))'''
pass
class ATenUnflattenDenseTensorsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::unflatten_dense_tensors(Tensor flat, Tensor[] tensors) -> (Tensor[])'''
pass
class ATenUnfoldSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::unfold(Tensor(a) self, int dimension, int size, int step) -> (Tensor(a))'''
pass
class ATenUnfoldCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::unfold_copy(Tensor self, int dimension, int size, int step) -> (Tensor)'''
pass
class ATenUniformSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::uniform.functional(Tensor self, float from=0., float to=1., *, Generator? generator=None) -> (Tensor)'''
pass
class ATenUniqueSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_unique(Tensor self, bool sorted=True, bool return_inverse=False) -> (Tensor, Tensor)'''
pass
class ATenUnique2Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_unique2(Tensor self, bool sorted=True, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor)'''
pass
class ATenUniqueConsecutiveSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::unique_consecutive(Tensor self, bool return_inverse=False, bool return_counts=False, int? dim=None) -> (Tensor, Tensor, Tensor)'''
pass
class ATenUniqueDimSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::unique_dim(Tensor self, int dim, bool sorted=True, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor)'''
pass
class ATenUniqueDimConsecutiveSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::unique_dim_consecutive(Tensor self, int dim, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor)'''
pass
class ATenUnpackDualSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_unpack_dual(Tensor(a) dual, int level) -> (Tensor(a) primal, Tensor tangent)'''
pass
class ATenUnsafeChunkSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::unsafe_chunk(Tensor self, int chunks, int dim=0) -> (Tensor[])'''
pass
class ATenUnsafeSplitSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::unsafe_split.Tensor(Tensor self, int split_size, int dim=0) -> (Tensor[])'''
pass
class ATenUnsafeSplitWithSizesSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::unsafe_split_with_sizes(Tensor self, int[] split_sizes, int dim=0) -> (Tensor[])'''
pass
class ATenUnsafeViewSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_unsafe_view(Tensor self, int[] size) -> (Tensor)'''
pass
class ATenUnsqueezeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::unsqueeze(Tensor(a) self, int dim) -> (Tensor(a))'''
pass
class ATenUnsqueezeCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::unsqueeze_copy(Tensor self, int dim) -> (Tensor)'''
pass
class ATenUpsampleSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::__upsample(Tensor input, int? size=None, int? scale_factor=None, str mode="nearest", bool? align_corners=None) -> (Tensor)
aten::__upsample.size_list(Tensor input, int[]? size=None, int? scale_factor=None, str mode="nearest", bool? align_corners=None) -> (Tensor)'''
pass
class ATenUpsampleBicubic2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::upsample_bicubic2d(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> (Tensor)
aten::upsample_bicubic2d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor)'''
pass
class ATenUpsampleBicubic2dAaSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_upsample_bicubic2d_aa(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> (Tensor)
aten::_upsample_bicubic2d_aa.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor)'''
pass
class ATenUpsampleBilinearSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::__upsample_bilinear(Tensor input, int? size=None, int? scale_factor=None) -> (Tensor)
aten::__upsample_bilinear.size_list(Tensor input, int[]? size=None, int? scale_factor=None) -> (Tensor)
aten::__upsample_bilinear.scale_list(Tensor input, int? size=None, int[]? scale_factor=None) -> (Tensor)
aten::__upsample_bilinear.size_list_scale_list(Tensor input, int[]? size=None, int[]? scale_factor=None) -> (Tensor)'''
pass
class ATenUpsampleBilinear2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::upsample_bilinear2d(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> (Tensor)
aten::upsample_bilinear2d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor)'''
pass
class ATenUpsampleBilinear2dAaSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_upsample_bilinear2d_aa(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> (Tensor)
aten::_upsample_bilinear2d_aa.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor)'''
pass
class ATenUpsampleLinear1dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::upsample_linear1d(Tensor self, int[1] output_size, bool align_corners, float? scales=None) -> (Tensor)
aten::upsample_linear1d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor)'''
pass
class ATenUpsampleNearestSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::__upsample_nearest(Tensor input, int? size=None, int? scale_factor=None) -> (Tensor)
aten::__upsample_nearest.size_list(Tensor input, int[]? size=None, int? scale_factor=None) -> (Tensor)'''
pass
class ATenUpsampleNearest1dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::upsample_nearest1d(Tensor self, int[1] output_size, float? scales=None) -> (Tensor)
aten::upsample_nearest1d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor)'''
pass
class ATenUpsampleNearest2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::upsample_nearest2d(Tensor self, int[2] output_size, float? scales_h=None, float? scales_w=None) -> (Tensor)
aten::upsample_nearest2d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor)'''
pass
class ATenUpsampleNearest3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::upsample_nearest3d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor)
aten::upsample_nearest3d(Tensor self, int[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> (Tensor)'''
pass
class ATenUpsampleNearestExact1dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_upsample_nearest_exact1d(Tensor self, int[1] output_size, float? scales=None) -> (Tensor)
aten::_upsample_nearest_exact1d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor)'''
pass
class ATenUpsampleNearestExact2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_upsample_nearest_exact2d(Tensor self, int[2] output_size, float? scales_h=None, float? scales_w=None) -> (Tensor)
aten::_upsample_nearest_exact2d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor)'''
pass
class ATenUpsampleNearestExact3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_upsample_nearest_exact3d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor)
aten::_upsample_nearest_exact3d(Tensor self, int[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> (Tensor)'''
pass
class ATenUpsampleTrilinear3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::upsample_trilinear3d(Tensor self, int[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> (Tensor)
aten::upsample_trilinear3d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor)'''
pass
class ATenValuesSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_values(Tensor(a) self) -> (Tensor(a))
aten::values(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenValuesCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::values_copy(Tensor self) -> (Tensor)
aten::_values_copy(Tensor self) -> (Tensor)'''
pass
class ATenVanderSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::vander(Tensor x, int? N=None, bool increasing=False) -> (Tensor)'''
pass
class ATenVarSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::var(Tensor self, bool unbiased=True) -> (Tensor)
aten::var.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor)
aten::var.names_dim(Tensor self, str[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor)
aten::var.correction(Tensor self, int[1]? dim, *, int? correction, bool keepdim=False) -> (Tensor)
aten::var.correction_names(Tensor self, str[1] dim, *, int? correction, bool keepdim=False) -> (Tensor)'''
pass
class ATenVarMeanSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::var_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor)
aten::var_mean.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)
aten::var_mean.names_dim(Tensor self, str[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)
aten::var_mean.correction(Tensor self, int[1]? dim, *, int? correction, bool keepdim=False) -> (Tensor, Tensor)
aten::var_mean.correction_names(Tensor self, str[1] dim, *, int? correction, bool keepdim=False) -> (Tensor, Tensor)'''
pass
class ATenVdotSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::vdot(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenViewSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::view(Tensor(a) self, int[] size) -> (Tensor(a))
aten::view.dtype(Tensor(a) self, int dtype) -> (Tensor(a))'''
pass
class ATenViewAsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::view_as(Tensor(a) self, Tensor other) -> (Tensor(a))'''
pass
class ATenViewAsComplexSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::view_as_complex(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenViewAsComplexCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::view_as_complex_copy(Tensor self) -> (Tensor)'''
pass
class ATenViewAsRealSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::view_as_real(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenViewAsRealCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::view_as_real_copy(Tensor self) -> (Tensor)'''
pass
class ATenViewCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::view_copy(Tensor self, int[] size) -> (Tensor)
aten::view_copy.dtype(Tensor self, int dtype) -> (Tensor)'''
pass
class ATenVsplitSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::vsplit.int(Tensor(a -> *) self, int sections) -> (Tensor[])
aten::vsplit.array(Tensor(a -> *) self, int[] indices) -> (Tensor[])'''
pass
class ATenVstackSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::vstack(Tensor[] tensors) -> (Tensor)'''
pass
class ATenWeightNormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_weight_norm(Tensor v, Tensor g, int dim=0) -> (Tensor)'''
pass
class ATenWeightNormInterfaceSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_weight_norm_interface(Tensor v, Tensor g, int dim=0) -> (Tensor, Tensor)'''
pass
class ATenWhereSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::where.self(Tensor condition, Tensor self, Tensor other) -> (Tensor)
aten::where.ScalarSelf(Tensor condition, Scalar self, Tensor other) -> (Tensor)
aten::where.ScalarOther(Tensor condition, Tensor self, Scalar other) -> (Tensor)
aten::where.Scalar(Tensor condition, Scalar self, Scalar other) -> (Tensor)
aten::where(Tensor condition) -> (Tensor[])'''
pass
class ATenXlogySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::xlogy.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::xlogy.Scalar_Self(Scalar self, Tensor other) -> (Tensor)
aten::xlogy.Scalar_Other(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenXorSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::__xor__.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::__xor__.Tensor(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenZeroSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::zero.functional(Tensor self) -> (Tensor)'''
pass
class ATenZerosLikeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::zeros_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor)'''
pass