tinynn/converter/schemas/torch/aten_schema.py (4,261 lines of code) (raw):

from abc import abstractmethod from ...operators.torch.base import OperatorConverter class ATenAbsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::abs(Tensor self) -> (Tensor)''' pass class ATenAbsoluteSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::absolute(Tensor self) -> (Tensor)''' pass class ATenAcosSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::acos(Tensor self) -> (Tensor)''' pass class ATenAcoshSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::acosh(Tensor self) -> (Tensor)''' pass class ATenAdaptiveAvgPool1dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::adaptive_avg_pool1d(Tensor self, int[1] output_size) -> (Tensor)''' pass class ATenAdaptiveAvgPool2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_adaptive_avg_pool2d(Tensor self, int[2] output_size) -> (Tensor) aten::adaptive_avg_pool2d(Tensor self, int[2] output_size) -> (Tensor)''' pass class ATenAdaptiveAvgPool3dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_adaptive_avg_pool3d(Tensor self, int[3] output_size) -> (Tensor) aten::adaptive_avg_pool3d(Tensor self, int[3] output_size) -> (Tensor)''' pass class ATenAdaptiveMaxPool1dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::adaptive_max_pool1d(Tensor self, int[1] output_size) -> (Tensor, Tensor)''' pass class ATenAdaptiveMaxPool2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::adaptive_max_pool2d(Tensor self, int[2] output_size) -> (Tensor, Tensor) aten::adaptive_max_pool2d.out(Tensor self, int[2] output_size, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))''' pass class ATenAdaptiveMaxPool3dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::adaptive_max_pool3d(Tensor self, int[3] output_size) -> (Tensor, Tensor) aten::adaptive_max_pool3d.out(Tensor self, int[3] output_size, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))''' pass class ATenAddSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> (Tensor) aten::add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor)''' pass class ATenAddBatchDimSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_add_batch_dim(Tensor self, int batch_dim, int level) -> (Tensor)''' pass class ATenAddReluSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_add_relu.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> (Tensor) aten::_add_relu.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor)''' pass class ATenAddbmmSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::addbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> (Tensor)''' pass class ATenAddcdivSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::addcdiv(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> (Tensor)''' pass class ATenAddcmulSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::addcmul(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> (Tensor)''' pass class ATenAddmmSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> (Tensor)''' pass class ATenAddmmActivationSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_addmm_activation(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, bool use_gelu=False) -> (Tensor)''' pass class ATenAddmvSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::addmv(Tensor self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) -> (Tensor)''' pass class ATenAddrSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::addr(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> (Tensor)''' pass class ATenAdjointSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::adjoint(Tensor(a) self) -> (Tensor(a))''' pass class ATenAffineGridGeneratorSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::affine_grid_generator(Tensor theta, int[] size, bool align_corners) -> (Tensor)''' pass class ATenAliasSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::alias(Tensor(a) self) -> (Tensor(a))''' pass class ATenAliasCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::alias_copy(Tensor self) -> (Tensor)''' pass class ATenAlignAsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::align_as(Tensor self, Tensor other) -> (Tensor)''' pass class ATenAlignTensorsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::align_tensors(Tensor[] tensors) -> (Tensor[])''' pass class ATenAlignToSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::align_to(Tensor(a) self, str[] names) -> (Tensor(a)) aten::align_to.ellipsis_idx(Tensor(a) self, str[] order, int ellipsis_idx) -> (Tensor(a))''' pass class ATenAllSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::all(Tensor self) -> (Tensor) aten::all.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor) aten::all.dimname(Tensor self, str dim, bool keepdim=False) -> (Tensor)''' pass class ATenAlphaDropoutSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::alpha_dropout(Tensor input, float p, bool train) -> (Tensor)''' pass class ATenAmaxSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::amax(Tensor self, int[1] dim=[], bool keepdim=False) -> (Tensor)''' pass class ATenAminSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::amin(Tensor self, int[1] dim=[], bool keepdim=False) -> (Tensor)''' pass class ATenAminmaxSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_aminmax(Tensor self) -> (Tensor, Tensor) aten::_aminmax.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor, Tensor) aten::aminmax(Tensor self, *, int? dim=None, bool keepdim=False) -> (Tensor min, Tensor max) aten::aminmax.out(Tensor self, *, int? dim=None, bool keepdim=False, Tensor(a!) min, Tensor(b!) max) -> (Tensor(a!) min, Tensor(b!) max)''' pass class ATenAmpForeachNonFiniteCheckAndUnscaleSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_amp_foreach_non_finite_check_and_unscale.functional(Tensor[] self, Tensor found_inf, Tensor inv_scale) -> (Tensor[] self_out, Tensor found_inf_out)''' pass class ATenAmpUpdateScaleSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_amp_update_scale.functional(Tensor self, Tensor growth_tracker, Tensor found_inf, float scale_growth_factor, float scale_backoff_factor, int growth_interval) -> (Tensor, Tensor growth_tracker_out)''' pass class ATenAndSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::__and__.Scalar(Tensor self, Scalar other) -> (Tensor) aten::__and__.Tensor(Tensor self, Tensor other) -> (Tensor)''' pass class ATenAngleSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::angle(Tensor self) -> (Tensor)''' pass class ATenAnySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::any(Tensor self) -> (Tensor) aten::any.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor) aten::any.dimname(Tensor self, str dim, bool keepdim=False) -> (Tensor)''' pass class ATenArccosSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::arccos(Tensor self) -> (Tensor)''' pass class ATenArccoshSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::arccosh(Tensor self) -> (Tensor)''' pass class ATenArcsinSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::arcsin(Tensor self) -> (Tensor)''' pass class ATenArcsinhSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::arcsinh(Tensor self) -> (Tensor)''' pass class ATenArctanSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::arctan(Tensor self) -> (Tensor)''' pass class ATenArctan2Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::arctan2(Tensor self, Tensor other) -> (Tensor)''' pass class ATenArctanhSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::arctanh(Tensor self) -> (Tensor)''' pass class ATenArgmaxSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::argmax(Tensor self, int? dim=None, bool keepdim=False) -> (Tensor)''' pass class ATenArgminSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::argmin(Tensor self, int? dim=None, bool keepdim=False) -> (Tensor)''' pass class ATenArgsortSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::argsort(Tensor self, int dim=-1, bool descending=False) -> (Tensor) aten::argsort.dimname(Tensor self, str dim, bool descending=False) -> (Tensor)''' pass class ATenArgwhereSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::argwhere(Tensor self) -> (Tensor)''' pass class ATenAsStridedSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::as_strided(Tensor(a) self, int[] size, int[] stride, int? storage_offset=None) -> (Tensor(a))''' pass class ATenAsStridedCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::as_strided_copy(Tensor self, int[] size, int[] stride, int? storage_offset=None) -> (Tensor)''' pass class ATenAsTensorSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::as_tensor(Tensor(a) data, *, int? dtype=None, Device? device=None) -> (Tensor(b|a))''' pass class ATenAsinSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::asin(Tensor self) -> (Tensor)''' pass class ATenAsinhSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::asinh(Tensor self) -> (Tensor)''' pass class ATenAtanSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::atan(Tensor self) -> (Tensor)''' pass class ATenAtan2Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::atan2(Tensor self, Tensor other) -> (Tensor)''' pass class ATenAtanhSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::atanh(Tensor self) -> (Tensor)''' pass class ATenAtleast1dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::atleast_1d(Tensor self) -> (Tensor) aten::atleast_1d.Sequence(Tensor[] tensors) -> (Tensor[])''' pass class ATenAtleast2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::atleast_2d(Tensor self) -> (Tensor) aten::atleast_2d.Sequence(Tensor[] tensors) -> (Tensor[])''' pass class ATenAtleast3dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::atleast_3d(Tensor self) -> (Tensor) aten::atleast_3d.Sequence(Tensor[] tensors) -> (Tensor[])''' pass class ATenAutocastToFullPrecisionSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_autocast_to_full_precision(Tensor(a) self, bool cuda_enabled, bool cpu_enabled) -> (Tensor(a))''' pass class ATenAutocastToReducedPrecisionSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_autocast_to_reduced_precision(Tensor(a) self, bool cuda_enabled, bool cpu_enabled, int cuda_dtype, int cpu_dtype) -> (Tensor(a))''' pass class ATenAvgPool1dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::avg_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=[0], bool ceil_mode=False, bool count_include_pad=True) -> (Tensor)''' pass class ATenAvgPool2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::avg_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> (Tensor)''' pass class ATenAvgPool3dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::avg_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=[0, 0, 0], bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> (Tensor)''' pass class ATenBaddbmmSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::baddbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> (Tensor)''' pass class ATenBatchNormSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor)''' pass class ATenBatchNormBackwardElemtSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::batch_norm_backward_elemt(Tensor grad_out, Tensor input, Tensor mean, Tensor invstd, Tensor? weight, Tensor mean_dy, Tensor mean_dy_xmu, Tensor count) -> (Tensor)''' pass class ATenBatchNormBackwardReduceSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::batch_norm_backward_reduce(Tensor grad_out, Tensor input, Tensor mean, Tensor invstd, Tensor? weight, bool input_g, bool weight_g, bool bias_g) -> (Tensor, Tensor, Tensor, Tensor)''' pass class ATenBatchNormElemtSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::batch_norm_elemt(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor invstd, float eps) -> (Tensor)''' pass class ATenBatchNormGatherStatsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::batch_norm_gather_stats(Tensor input, Tensor mean, Tensor invstd, Tensor? running_mean, Tensor? running_var, float momentum, float eps, int count) -> (Tensor, Tensor)''' pass class ATenBatchNormGatherStatsWithCountsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::batch_norm_gather_stats_with_counts(Tensor input, Tensor mean, Tensor invstd, Tensor? running_mean, Tensor? running_var, float momentum, float eps, Tensor counts) -> (Tensor, Tensor)''' pass class ATenBatchNormImplIndexSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_batch_norm_impl_index(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor, Tensor, Tensor, Tensor, int)''' pass class ATenBatchNormStatsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::batch_norm_stats(Tensor input, float eps) -> (Tensor, Tensor)''' pass class ATenBatchNormUpdateStatsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::batch_norm_update_stats(Tensor input, Tensor? running_mean, Tensor? running_var, float momentum) -> (Tensor, Tensor)''' pass class ATenBernoulliSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::bernoulli(Tensor self, *, Generator? generator=None) -> (Tensor) aten::bernoulli.p(Tensor self, float p, *, Generator? generator=None) -> (Tensor) aten::bernoulli.Tensor_functional(Tensor self, Tensor p, *, Generator? generator=None) -> (Tensor)''' pass class ATenBilinearSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::bilinear(Tensor input1, Tensor input2, Tensor weight, Tensor? bias=None) -> (Tensor)''' pass class ATenBinaryCrossEntropySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::binary_cross_entropy(Tensor self, Tensor target, Tensor? weight=None, int reduction=1) -> (Tensor)''' pass class ATenBinaryCrossEntropyWithLogitsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::binary_cross_entropy_with_logits(Tensor self, Tensor target, Tensor? weight=None, Tensor? pos_weight=None, int reduction=1) -> (Tensor)''' pass class ATenBincountSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::bincount(Tensor self, Tensor? weights=None, int minlength=0) -> (Tensor)''' pass class ATenBinomialSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::binomial(Tensor count, Tensor prob, Generator? generator=None) -> (Tensor)''' pass class ATenBitwiseAndSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::bitwise_and.Tensor(Tensor self, Tensor other) -> (Tensor) aten::bitwise_and.Scalar(Tensor self, Scalar other) -> (Tensor) aten::bitwise_and.Scalar_Tensor(Scalar self, Tensor other) -> (Tensor)''' pass class ATenBitwiseLeftShiftSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::bitwise_left_shift.Tensor(Tensor self, Tensor other) -> (Tensor) aten::bitwise_left_shift.Tensor_Scalar(Tensor self, Scalar other) -> (Tensor) aten::bitwise_left_shift.Scalar_Tensor(Scalar self, Tensor other) -> (Tensor)''' pass class ATenBitwiseNotSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::bitwise_not(Tensor self) -> (Tensor)''' pass class ATenBitwiseOrSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::bitwise_or.Tensor(Tensor self, Tensor other) -> (Tensor) aten::bitwise_or.Scalar_Tensor(Scalar self, Tensor other) -> (Tensor) aten::bitwise_or.Scalar(Tensor self, Scalar other) -> (Tensor)''' pass class ATenBitwiseRightShiftSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::bitwise_right_shift.Tensor(Tensor self, Tensor other) -> (Tensor) aten::bitwise_right_shift.Tensor_Scalar(Tensor self, Scalar other) -> (Tensor) aten::bitwise_right_shift.Scalar_Tensor(Scalar self, Tensor other) -> (Tensor)''' pass class ATenBitwiseXorSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::bitwise_xor.Tensor(Tensor self, Tensor other) -> (Tensor) aten::bitwise_xor.Scalar_Tensor(Scalar self, Tensor other) -> (Tensor) aten::bitwise_xor.Scalar(Tensor self, Scalar other) -> (Tensor)''' pass class ATenBlockDiagSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::block_diag(Tensor[] tensors) -> (Tensor)''' pass class ATenBmmSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::bmm(Tensor self, Tensor mat2) -> (Tensor)''' pass class ATenBroadcastTensorsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::broadcast_tensors(Tensor[] tensors) -> (Tensor[])''' pass class ATenBroadcastToSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::broadcast_to(Tensor(a) self, int[] size) -> (Tensor(a))''' pass class ATenBucketizeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::bucketize.Tensor(Tensor self, Tensor boundaries, *, bool out_int32=False, bool right=False) -> (Tensor) aten::bucketize.Scalar(Scalar self, Tensor boundaries, *, bool out_int32=False, bool right=False) -> (Tensor)''' pass class ATenCartesianProdSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cartesian_prod(Tensor[] tensors) -> (Tensor)''' pass class ATenCatSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cat(Tensor[] tensors, int dim=0) -> (Tensor) aten::cat.names(Tensor[] tensors, str dim) -> (Tensor)''' pass class ATenCauchySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cauchy.functional(Tensor self, float median=0., float sigma=1., *, Generator? generator=None) -> (Tensor)''' pass class ATenCcolIndicesSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::ccol_indices(Tensor(a) self) -> (Tensor(a))''' pass class ATenCcolIndicesCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::ccol_indices_copy(Tensor self) -> (Tensor)''' pass class ATenCdistSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cdist(Tensor x1, Tensor x2, float p=2., int? compute_mode=None) -> (Tensor)''' pass class ATenCeilSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::ceil(Tensor self) -> (Tensor)''' pass class ATenCeluSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::celu(Tensor self, Scalar alpha=1.) -> (Tensor)''' pass class ATenChainMatmulSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::chain_matmul(Tensor[] matrices) -> (Tensor)''' pass class ATenChalfSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::chalf(Tensor self, *, int? memory_format=None) -> (Tensor)''' pass class ATenChannelShuffleSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::channel_shuffle(Tensor self, int groups) -> (Tensor)''' pass class ATenCholeskySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cholesky(Tensor self, bool upper=False) -> (Tensor)''' pass class ATenCholeskyInverseSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cholesky_inverse(Tensor self, bool upper=False) -> (Tensor)''' pass class ATenCholeskySolveSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cholesky_solve(Tensor self, Tensor input2, bool upper=False) -> (Tensor)''' pass class ATenCholeskySolveHelperSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_cholesky_solve_helper(Tensor self, Tensor A, bool upper) -> (Tensor)''' pass class ATenChooseQparamsOptimizedSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::choose_qparams_optimized(Tensor input, int numel, int n_bins, float ratio, int bit_width) -> (Tensor, Tensor)''' pass class ATenChunkSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::chunk(Tensor(a -> *) self, int chunks, int dim=0) -> (Tensor[])''' pass class ATenClampSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> (Tensor) aten::clamp.Tensor(Tensor self, Tensor? min=None, Tensor? max=None) -> (Tensor)''' pass class ATenClampMaxSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::clamp_max(Tensor self, Scalar max) -> (Tensor) aten::clamp_max.Tensor(Tensor self, Tensor max) -> (Tensor)''' pass class ATenClampMinSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::clamp_min(Tensor self, Scalar min) -> (Tensor) aten::clamp_min.Tensor(Tensor self, Tensor min) -> (Tensor)''' pass class ATenClipSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::clip(Tensor self, Scalar? min=None, Scalar? max=None) -> (Tensor) aten::clip.Tensor(Tensor self, Tensor? min=None, Tensor? max=None) -> (Tensor)''' pass class ATenCloneSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::clone(Tensor self, *, int? memory_format=None) -> (Tensor)''' pass class ATenCoalesceSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_coalesce(Tensor self) -> (Tensor) aten::coalesce(Tensor(a) self) -> (Tensor(a))''' pass class ATenCoalescedSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_coalesced.functional(Tensor self, bool coalesced) -> (Tensor)''' pass class ATenCol2imSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::col2im(Tensor self, int[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> (Tensor)''' pass class ATenColIndicesSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::col_indices(Tensor(a) self) -> (Tensor(a))''' pass class ATenColIndicesCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::col_indices_copy(Tensor self) -> (Tensor)''' pass class ATenColumnStackSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::column_stack(Tensor[] tensors) -> (Tensor)''' pass class ATenCombinationsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::combinations(Tensor self, int r=2, bool with_replacement=False) -> (Tensor)''' pass class ATenComplexSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::complex(Tensor real, Tensor imag) -> (Tensor)''' pass class ATenComputeLinearCombinationSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_compute_linear_combination(Tensor input, Tensor coefficients) -> (Tensor)''' pass class ATenConcatSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::concat(Tensor[] tensors, int dim=0) -> (Tensor) aten::concat.names(Tensor[] tensors, str dim) -> (Tensor)''' pass class ATenConjSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::conj(Tensor(a) self) -> (Tensor(a)) aten::_conj(Tensor(a) self) -> (Tensor(a))''' pass class ATenConjCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_conj_copy(Tensor self) -> (Tensor)''' pass class ATenConjPhysicalSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::conj_physical(Tensor self) -> (Tensor) aten::_conj_physical(Tensor self) -> (Tensor)''' pass class ATenConstantPadNdSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::constant_pad_nd(Tensor self, int[] pad, Scalar value=0) -> (Tensor)''' pass class ATenContiguousSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::contiguous(Tensor(a) self, *, int memory_format=0) -> (Tensor(a))''' pass class ATenConv1dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::conv1d(Tensor input, Tensor weight, Tensor? bias=None, int[1] stride=[1], int[1] padding=[0], int[1] dilation=[1], int groups=1) -> (Tensor) aten::conv1d.padding(Tensor input, Tensor weight, Tensor? bias=None, int[1] stride=[1], str padding="valid", int[1] dilation=[1], int groups=1) -> (Tensor)''' pass class ATenConv2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::conv2d(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=[1, 1], int[2] padding=[0, 0], int[2] dilation=[1, 1], int groups=1) -> (Tensor) aten::conv2d.padding(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=[1, 1], str padding="valid", int[2] dilation=[1, 1], int groups=1) -> (Tensor)''' pass class ATenConv3dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::conv3d(Tensor input, Tensor weight, Tensor? bias=None, int[3] stride=[1, 1, 1], int[3] padding=[0, 0, 0], int[3] dilation=[1, 1, 1], int groups=1) -> (Tensor) aten::conv3d.padding(Tensor input, Tensor weight, Tensor? bias=None, int[3] stride=[1, 1, 1], str padding="valid", int[3] dilation=[1, 1, 1], int groups=1) -> (Tensor)''' pass class ATenConvDepthwise2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_conv_depthwise2d(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias, int[2] stride, int[2] padding, int[2] dilation) -> (Tensor)''' pass class ATenConvDepthwise3dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::conv_depthwise3d(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias, int[3] stride, int[3] padding, int[3] dilation) -> (Tensor)''' pass class ATenConvTbcSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::conv_tbc(Tensor self, Tensor weight, Tensor bias, int pad=0) -> (Tensor)''' pass class ATenConvTranspose1dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::conv_transpose1d(Tensor input, Tensor weight, Tensor? bias=None, int[1] stride=[1], int[1] padding=[0], int[1] output_padding=[0], int groups=1, int[1] dilation=[1]) -> (Tensor)''' pass class ATenConvTranspose2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::conv_transpose2d.input(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=[1, 1], int[2] padding=[0, 0], int[2] output_padding=[0, 0], int groups=1, int[2] dilation=[1, 1]) -> (Tensor)''' pass class ATenConvTranspose3dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::conv_transpose3d.input(Tensor input, Tensor weight, Tensor? bias=None, int[3] stride=[1, 1, 1], int[3] padding=[0, 0, 0], int[3] output_padding=[0, 0, 0], int groups=1, int[3] dilation=[1, 1, 1]) -> (Tensor)''' pass class ATenConvertIndicesFromCooToCsrSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_convert_indices_from_coo_to_csr(Tensor self, int size, *, bool out_int32=False) -> (Tensor)''' pass class ATenConvertIndicesFromCsrToCooSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_convert_indices_from_csr_to_coo(Tensor crow_indices, Tensor col_indices, *, bool out_int32=False, bool transpose=False) -> (Tensor)''' pass class ATenConvolutionSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_convolution.deprecated(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool benchmark, bool deterministic, bool cudnn_enabled) -> (Tensor) aten::_convolution(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) -> (Tensor) aten::convolution(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups) -> (Tensor)''' pass class ATenConvolutionBackwardOverrideableSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::convolution_backward_overrideable(Tensor grad_output, Tensor input, Tensor weight, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)''' pass class ATenConvolutionModeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_convolution_mode(Tensor input, Tensor weight, Tensor? bias, int[] stride, str padding, int[] dilation, int groups) -> (Tensor)''' pass class ATenConvolutionOverrideableSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::convolution_overrideable(Tensor input, Tensor weight, Tensor? bias, int[] stride, int[] padding, int[] dilation, bool transposed, int[] output_padding, int groups) -> (Tensor)''' pass class ATenCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::copy(Tensor self, Tensor src, bool non_blocking=False) -> (Tensor) aten::copy.out(Tensor self, Tensor src, bool non_blocking=False, *, Tensor(a!) out) -> (Tensor(a!)) aten::copy_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> (Tensor(a!)) aten::copy_.Tensor(Tensor(a!) self, Tensor other) -> (Tensor(a!)) aten::copy_.int(Tensor(a!) self, int other) -> (Tensor(a!)) aten::copy_.float(Tensor(a!) self, float other) -> (Tensor(a!))''' pass class ATenCopyFromSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_copy_from(Tensor self, Tensor dst, bool non_blocking=False) -> (Tensor)''' pass class ATenCopyFromAndResizeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_copy_from_and_resize(Tensor self, Tensor dst) -> (Tensor)''' pass class ATenCopysignSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::copysign.Tensor(Tensor self, Tensor other) -> (Tensor) aten::copysign.Scalar(Tensor self, Scalar other) -> (Tensor)''' pass class ATenCorrcoefSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::corrcoef(Tensor self) -> (Tensor)''' pass class ATenCosSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cos(Tensor self) -> (Tensor)''' pass class ATenCoshSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cosh(Tensor self) -> (Tensor)''' pass class ATenCosineEmbeddingLossSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cosine_embedding_loss(Tensor input1, Tensor input2, Tensor target, float margin=0., int reduction=1) -> (Tensor)''' pass class ATenCosineSimilaritySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cosine_similarity(Tensor x1, Tensor x2, int dim=1, float eps=1e-08) -> (Tensor)''' pass class ATenCountNonzeroSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::count_nonzero.dim_IntList(Tensor self, int[] dim) -> (Tensor) aten::count_nonzero(Tensor self, int? dim=None) -> (Tensor)''' pass class ATenCovSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cov(Tensor self, *, int correction=1, Tensor? fweights=None, Tensor? aweights=None) -> (Tensor)''' pass class ATenCpuSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cpu(Tensor(a) self) -> (Tensor(b|a))''' pass class ATenCrossSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cross(Tensor self, Tensor other, int? dim=None) -> (Tensor)''' pass class ATenCrossEntropyLossSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cross_entropy_loss(Tensor self, Tensor target, Tensor? weight=None, int reduction=1, int ignore_index=-100, float label_smoothing=0.) -> (Tensor)''' pass class ATenCrowIndicesSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::crow_indices(Tensor(a) self) -> (Tensor(a))''' pass class ATenCrowIndicesCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::crow_indices_copy(Tensor self) -> (Tensor)''' pass class ATenCtcLossSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::ctc_loss.IntList(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, int reduction=1, bool zero_infinity=False) -> (Tensor) aten::ctc_loss.Tensor(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank=0, int reduction=1, bool zero_infinity=False) -> (Tensor) aten::_ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, bool zero_infinity=False) -> (Tensor, Tensor)''' pass class ATenCummaxSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cummax(Tensor self, int dim) -> (Tensor values, Tensor indices) aten::cummax.dimname(Tensor self, str dim) -> (Tensor values, Tensor indices) aten::cummax.out(Tensor self, int dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)''' pass class ATenCumminSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cummin(Tensor self, int dim) -> (Tensor values, Tensor indices) aten::cummin.dimname(Tensor self, str dim) -> (Tensor values, Tensor indices) aten::cummin.out(Tensor self, int dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)''' pass class ATenCumprodSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cumprod(Tensor self, int dim, *, int? dtype=None) -> (Tensor) aten::cumprod.dimname(Tensor self, str dim, *, int? dtype=None) -> (Tensor)''' pass class ATenCumsumSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cumsum(Tensor self, int dim, *, int? dtype=None) -> (Tensor) aten::cumsum.dimname(Tensor self, str dim, *, int? dtype=None) -> (Tensor)''' pass class ATenCumulativeTrapezoidSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::cumulative_trapezoid.x(Tensor y, Tensor x, *, int dim=-1) -> (Tensor) aten::cumulative_trapezoid.dx(Tensor y, *, Scalar dx=1, int dim=-1) -> (Tensor)''' pass class ATenDataSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::data(Tensor self) -> (Tensor)''' pass class ATenDeg2radSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::deg2rad(Tensor self) -> (Tensor)''' pass class ATenDequantizeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::dequantize.self(Tensor self) -> (Tensor) aten::dequantize.tensors(Tensor[] tensors) -> (Tensor[]) aten::dequantize.tensor(Tensor qtensor) -> (Tensor) aten::dequantize.list(Tensor[] qtensors) -> (Tensor[])''' pass class ATenDetSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::det(Tensor self) -> (Tensor)''' pass class ATenDetLuBasedHelperSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_det_lu_based_helper(Tensor self) -> (Tensor det, Tensor lu, Tensor pivs)''' pass class ATenDetLuBasedHelperBackwardHelperSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_det_lu_based_helper_backward_helper(Tensor det_grad, Tensor det, Tensor self, Tensor lu, Tensor pivs) -> (Tensor)''' pass class ATenDetachSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::detach(Tensor(a) self) -> (Tensor(a))''' pass class ATenDetachCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::detach_copy(Tensor self) -> (Tensor)''' pass class ATenDiagSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::diag(Tensor self, int diagonal=0) -> (Tensor)''' pass class ATenDiagEmbedSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::diag_embed(Tensor self, int offset=0, int dim1=-2, int dim2=-1) -> (Tensor)''' pass class ATenDiagflatSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::diagflat(Tensor self, int offset=0) -> (Tensor)''' pass class ATenDiagonalSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::diagonal(Tensor(a) self, int offset=0, int dim1=0, int dim2=1) -> (Tensor(a)) aten::diagonal.Dimname(Tensor(a) self, *, str outdim, str dim1, str dim2, int offset=0) -> (Tensor(a))''' pass class ATenDiagonalCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::diagonal_copy(Tensor self, int offset=0, int dim1=0, int dim2=1) -> (Tensor)''' pass class ATenDiagonalScatterSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::diagonal_scatter(Tensor self, Tensor src, int offset=0, int dim1=0, int dim2=1) -> (Tensor)''' pass class ATenDiffSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::diff(Tensor self, int n=1, int dim=-1, Tensor? prepend=None, Tensor? append=None) -> (Tensor)''' pass class ATenDigammaSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::digamma(Tensor self) -> (Tensor)''' pass class ATenDimArangeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_dim_arange(Tensor like, int dim) -> (Tensor)''' pass class ATenDistSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::dist(Tensor self, Tensor other, Scalar p=2) -> (Tensor)''' pass class ATenDivSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::div.Tensor(Tensor self, Tensor other) -> (Tensor) aten::div.Scalar(Tensor self, Scalar other) -> (Tensor) aten::div.Tensor_mode(Tensor self, Tensor other, *, str? rounding_mode) -> (Tensor) aten::div.Scalar_mode(Tensor self, Scalar other, *, str? rounding_mode) -> (Tensor)''' pass class ATenDivideSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::divide.Tensor(Tensor self, Tensor other) -> (Tensor) aten::divide.Scalar(Tensor self, Scalar other) -> (Tensor) aten::divide.Tensor_mode(Tensor self, Tensor other, *, str? rounding_mode) -> (Tensor) aten::divide.Scalar_mode(Tensor self, Scalar other, *, str? rounding_mode) -> (Tensor)''' pass class ATenDotSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::dot(Tensor self, Tensor tensor) -> (Tensor)''' pass class ATenDropoutSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::dropout(Tensor input, float p, bool train) -> (Tensor)''' pass class ATenDsplitSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::dsplit.int(Tensor(a -> *) self, int sections) -> (Tensor[]) aten::dsplit.array(Tensor(a -> *) self, int[] indices) -> (Tensor[])''' pass class ATenDstackSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::dstack(Tensor[] tensors) -> (Tensor)''' pass class ATenEigSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::eig(Tensor self, bool eigenvectors=False) -> (Tensor eigenvalues, Tensor eigenvectors) aten::eig.e(Tensor self, bool eigenvectors=False, *, Tensor(a!) e, Tensor(b!) v) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors)''' pass class ATenEinsumSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::einsum(str equation, Tensor[] tensors) -> (Tensor) aten::einsum.sublist(Tensor a, ...) -> (Tensor)''' pass class ATenEluSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::elu(Tensor self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> (Tensor)''' pass class ATenEmbeddingSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> (Tensor)''' pass class ATenEmbeddingBagSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False) -> (Tensor, Tensor, Tensor, Tensor) aten::embedding_bag.padding_idx(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq, int mode, bool sparse, Tensor? per_sample_weights, bool include_last_offset, int? padding_idx) -> (Tensor, Tensor, Tensor, Tensor) aten::_embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False, int padding_idx=-1) -> (Tensor, Tensor, Tensor, Tensor)''' pass class ATenEmbeddingRenormSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::embedding_renorm.functional(Tensor self, Tensor indices, float max_norm, float norm_type) -> (Tensor)''' pass class ATenEmptyLikeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::empty_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor)''' pass class ATenEmptyPerChannelAffineQuantizedSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_empty_per_channel_affine_quantized(int[] size, *, Tensor scales, Tensor zero_points, int axis, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=0) -> (Tensor)''' pass class ATenEmptyQuantizedSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::empty_quantized(int[] size, Tensor qtensor, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor)''' pass class ATenEqSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::eq.Tensor(Tensor self, Tensor other) -> (Tensor) aten::eq.Scalar(Tensor self, Scalar other) -> (Tensor)''' pass class ATenErfSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::erf(Tensor self) -> (Tensor)''' pass class ATenErfcSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::erfc(Tensor self) -> (Tensor)''' pass class ATenErfinvSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::erfinv(Tensor self) -> (Tensor)''' pass class ATenEuclideanDistSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_euclidean_dist(Tensor x1, Tensor x2) -> (Tensor)''' pass class ATenExpSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::exp(Tensor self) -> (Tensor)''' pass class ATenExp2Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::exp2(Tensor self) -> (Tensor)''' pass class ATenExpandSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::expand(Tensor(a) self, int[] size, *, bool implicit=False) -> (Tensor(a)) aten::expand.SymInt(Tensor(a) self, SymInt[] size, *, bool implicit=False) -> (Tensor(a))''' pass class ATenExpandAsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::expand_as(Tensor(a) self, Tensor other) -> (Tensor(a))''' pass class ATenExpandCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::expand_copy(Tensor self, int[] size, *, bool implicit=False) -> (Tensor) aten::expand_copy.SymInt(Tensor self, SymInt[] size, *, bool implicit=False) -> (Tensor)''' pass class ATenExpm1Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::expm1(Tensor self) -> (Tensor)''' pass class ATenExponentialSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::exponential.functional(Tensor self, float lambd=1., *, Generator? generator=None) -> (Tensor)''' pass class ATenFakeQuantizeLearnablePerChannelAffineSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_fake_quantize_learnable_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, float grad_factor=1.) -> (Tensor)''' pass class ATenFakeQuantizeLearnablePerTensorAffineSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_fake_quantize_learnable_per_tensor_affine(Tensor self, Tensor scale, Tensor zero_point, int quant_min, int quant_max, float grad_factor=1.) -> (Tensor)''' pass class ATenFakeQuantizePerChannelAffineSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fake_quantize_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> (Tensor)''' pass class ATenFakeQuantizePerChannelAffineCachemaskSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fake_quantize_per_channel_affine_cachemask(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> (Tensor output, Tensor mask)''' pass class ATenFakeQuantizePerTensorAffineSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fake_quantize_per_tensor_affine(Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> (Tensor) aten::fake_quantize_per_tensor_affine.tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, int quant_min, int quant_max) -> (Tensor)''' pass class ATenFakeQuantizePerTensorAffineCachemaskSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fake_quantize_per_tensor_affine_cachemask(Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> (Tensor output, Tensor mask)''' pass class ATenFakeQuantizePerTensorAffineCachemaskTensorQparamsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_fake_quantize_per_tensor_affine_cachemask_tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, Tensor fake_quant_enabled, int quant_min, int quant_max) -> (Tensor output, Tensor mask)''' pass class ATenFeatureAlphaDropoutSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::feature_alpha_dropout(Tensor input, float p, bool train) -> (Tensor)''' pass class ATenFeatureDropoutSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::feature_dropout(Tensor input, float p, bool train) -> (Tensor)''' pass class ATenFftC2cSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_fft_c2c(Tensor self, int[] dim, int normalization, bool forward) -> (Tensor)''' pass class ATenFftC2rSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_fft_c2r(Tensor self, int[] dim, int normalization, int last_dim_size) -> (Tensor)''' pass class ATenFftFftSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_fft(Tensor self, int? n=None, int dim=-1, str? norm=None) -> (Tensor)''' pass class ATenFftFft2Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_fft2(Tensor self, int[1]? s=None, int[1] dim=[-2, -1], str? norm=None) -> (Tensor)''' pass class ATenFftFftnSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_fftn(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None) -> (Tensor)''' pass class ATenFftFftshiftSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_fftshift(Tensor self, int[1]? dim=None) -> (Tensor)''' pass class ATenFftHfftSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_hfft(Tensor self, int? n=None, int dim=-1, str? norm=None) -> (Tensor)''' pass class ATenFftHfft2Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_hfft2(Tensor self, int[1]? s=None, int[1] dim=[-2, -1], str? norm=None) -> (Tensor)''' pass class ATenFftHfftnSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_hfftn(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None) -> (Tensor)''' pass class ATenFftIfftSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_ifft(Tensor self, int? n=None, int dim=-1, str? norm=None) -> (Tensor)''' pass class ATenFftIfft2Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_ifft2(Tensor self, int[1]? s=None, int[1] dim=[-2, -1], str? norm=None) -> (Tensor)''' pass class ATenFftIfftnSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_ifftn(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None) -> (Tensor)''' pass class ATenFftIfftshiftSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_ifftshift(Tensor self, int[1]? dim=None) -> (Tensor)''' pass class ATenFftIhfftSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_ihfft(Tensor self, int? n=None, int dim=-1, str? norm=None) -> (Tensor)''' pass class ATenFftIhfft2Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_ihfft2(Tensor self, int[1]? s=None, int[1] dim=[-2, -1], str? norm=None) -> (Tensor)''' pass class ATenFftIhfftnSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_ihfftn(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None) -> (Tensor)''' pass class ATenFftIrfftSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_irfft(Tensor self, int? n=None, int dim=-1, str? norm=None) -> (Tensor)''' pass class ATenFftIrfft2Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_irfft2(Tensor self, int[1]? s=None, int[1] dim=[-2, -1], str? norm=None) -> (Tensor)''' pass class ATenFftIrfftnSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_irfftn(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None) -> (Tensor)''' pass class ATenFftR2cSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_fft_r2c(Tensor self, int[] dim, int normalization, bool onesided) -> (Tensor)''' pass class ATenFftRfftSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_rfft(Tensor self, int? n=None, int dim=-1, str? norm=None) -> (Tensor)''' pass class ATenFftRfft2Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_rfft2(Tensor self, int[1]? s=None, int[1] dim=[-2, -1], str? norm=None) -> (Tensor)''' pass class ATenFftRfftnSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fft_rfftn(Tensor self, int[1]? s=None, int[1]? dim=None, str? norm=None) -> (Tensor)''' pass class ATenFillSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fill.Scalar(Tensor self, Scalar value) -> (Tensor) aten::fill.Tensor(Tensor self, Tensor value) -> (Tensor) aten::fill_.Scalar(Tensor(a!) self, Scalar value) -> (Tensor(a!)) aten::fill_.Tensor(Tensor(a!) self, Tensor value) -> (Tensor(a!))''' pass class ATenFixSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fix(Tensor self) -> (Tensor)''' pass class ATenFlattenSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::flatten.DimnameList(Tensor(a) self, str[] dims, str out_dim) -> (Tensor(a)) aten::flatten.named_out_dim(Tensor(a) self, int start_dim, int end_dim, str out_dim) -> (Tensor(a)) aten::flatten.using_ints(Tensor(a) self, int start_dim=0, int end_dim=-1) -> (Tensor(a)) aten::flatten.using_names(Tensor(a) self, str start_dim, str end_dim, str out_dim) -> (Tensor(a))''' pass class ATenFlattenDenseTensorsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::flatten_dense_tensors(Tensor[] tensors) -> (Tensor)''' pass class ATenFlipSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::flip(Tensor self, int[] dims) -> (Tensor)''' pass class ATenFliplrSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fliplr(Tensor self) -> (Tensor)''' pass class ATenFlipudSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::flipud(Tensor self) -> (Tensor)''' pass class ATenFloatPowerSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::float_power.Tensor_Tensor(Tensor self, Tensor exponent) -> (Tensor) aten::float_power.Scalar(Scalar self, Tensor exponent) -> (Tensor) aten::float_power.Tensor_Scalar(Tensor self, Scalar exponent) -> (Tensor)''' pass class ATenFloorSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::floor(Tensor self) -> (Tensor)''' pass class ATenFloorDivideSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::floor_divide(Tensor self, Tensor other) -> (Tensor) aten::floor_divide.Scalar(Tensor self, Scalar other) -> (Tensor)''' pass class ATenFmaxSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fmax(Tensor self, Tensor other) -> (Tensor)''' pass class ATenFminSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fmin(Tensor self, Tensor other) -> (Tensor)''' pass class ATenFmodSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fmod.Tensor(Tensor self, Tensor other) -> (Tensor) aten::fmod.Scalar(Tensor self, Scalar other) -> (Tensor)''' pass class ATenFracSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::frac(Tensor self) -> (Tensor)''' pass class ATenFractionalMaxPool2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fractional_max_pool2d(Tensor self, int[2] kernel_size, int[2] output_size, Tensor random_samples) -> (Tensor, Tensor) aten::fractional_max_pool2d.output(Tensor self, int[2] kernel_size, int[2] output_size, Tensor random_samples, *, Tensor(a!) output, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))''' pass class ATenFractionalMaxPool3dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fractional_max_pool3d(Tensor self, int[3] kernel_size, int[3] output_size, Tensor random_samples) -> (Tensor, Tensor) aten::fractional_max_pool3d.output(Tensor self, int[3] kernel_size, int[3] output_size, Tensor random_samples, *, Tensor(a!) output, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))''' pass class ATenFrexpSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::frexp.Tensor(Tensor self) -> (Tensor mantissa, Tensor exponent)''' pass class ATenFrobeniusNormSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::frobenius_norm(Tensor self) -> (Tensor) aten::frobenius_norm.dim(Tensor self, int[1] dim, bool keepdim=False) -> (Tensor)''' pass class ATenFullLikeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::full_like(Tensor self, Scalar fill_value, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor)''' pass class ATenFusedDropoutSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_fused_dropout(Tensor self, float p, Generator? generator=None) -> (Tensor, Tensor)''' pass class ATenFusedMovingAvgObsFakeQuantSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::fused_moving_avg_obs_fake_quant(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor)''' pass class ATenFusedMovingAvgObsFqHelperSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_fused_moving_avg_obs_fq_helper(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask) aten::_fused_moving_avg_obs_fq_helper.functional(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor running_min, Tensor running_max, Tensor scale, Tensor zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask, Tensor running_min_out, Tensor running_max_out, Tensor scale_out, Tensor zero_point_out) aten::_fused_moving_avg_obs_fq_helper.out(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False, *, Tensor(e!) out0, Tensor(f!) out1) -> (Tensor(e!), Tensor(f!))''' pass class ATenFwPrimalSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_fw_primal(Tensor(a) self, int level) -> (Tensor(a))''' pass class ATenFwPrimalCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_fw_primal_copy(Tensor self, int level) -> (Tensor)''' pass class ATenGatherSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::gather(Tensor self, int dim, Tensor index, *, bool sparse_grad=False) -> (Tensor) aten::gather.dimname(Tensor self, str dim, Tensor index, *, bool sparse_grad=False) -> (Tensor)''' pass class ATenGcdSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::gcd(Tensor self, Tensor other) -> (Tensor)''' pass class ATenGeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::ge.Tensor(Tensor self, Tensor other) -> (Tensor) aten::ge.Scalar(Tensor self, Scalar other) -> (Tensor)''' pass class ATenGeluSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::gelu(Tensor self, *, str approximate="none") -> (Tensor)''' pass class ATenGeometricSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::geometric.functional(Tensor self, float p, *, Generator? generator=None) -> (Tensor)''' pass class ATenGeqrfSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::geqrf(Tensor self) -> (Tensor a, Tensor tau) aten::geqrf.a(Tensor self, *, Tensor(a!) a, Tensor(b!) tau) -> (Tensor(a!) a, Tensor(b!) tau)''' pass class ATenGerSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::ger(Tensor self, Tensor vec2) -> (Tensor)''' pass class ATenGluSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::glu(Tensor self, int dim=-1) -> (Tensor)''' pass class ATenGluBackwardJvpSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::glu_backward_jvp(Tensor grad_x, Tensor grad_glu, Tensor x, Tensor dgrad_glu, Tensor dx, int dim) -> (Tensor)''' pass class ATenGluJvpSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::glu_jvp(Tensor glu, Tensor x, Tensor dx, int dim) -> (Tensor)''' pass class ATenGreaterSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::greater.Scalar(Tensor self, Scalar other) -> (Tensor) aten::greater.Tensor(Tensor self, Tensor other) -> (Tensor)''' pass class ATenGreaterEqualSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::greater_equal.Scalar(Tensor self, Scalar other) -> (Tensor) aten::greater_equal.Tensor(Tensor self, Tensor other) -> (Tensor)''' pass class ATenGridSamplerSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::grid_sampler(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor)''' pass class ATenGridSampler2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::grid_sampler_2d(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor)''' pass class ATenGridSampler2dCpuFallbackSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_grid_sampler_2d_cpu_fallback(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor)''' pass class ATenGridSampler3dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::grid_sampler_3d(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor)''' pass class ATenGroupNormSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::group_norm(Tensor input, int num_groups, Tensor? weight=None, Tensor? bias=None, float eps=1.0000000000000001e-05, bool cudnn_enabled=True) -> (Tensor)''' pass class ATenGruSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::gru.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor) aten::gru.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)''' pass class ATenGruCellSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::gru_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor)''' pass class ATenGtSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::gt.Tensor(Tensor self, Tensor other) -> (Tensor) aten::gt.Scalar(Tensor self, Scalar other) -> (Tensor)''' pass class ATenHardshrinkSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::hardshrink(Tensor self, Scalar lambd=0.5) -> (Tensor)''' pass class ATenHardsigmoidSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::hardsigmoid(Tensor self) -> (Tensor)''' pass class ATenHardswishSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::hardswish(Tensor self) -> (Tensor)''' pass class ATenHardtanhSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::hardtanh(Tensor self, Scalar min_val=-1, Scalar max_val=1) -> (Tensor)''' pass class ATenHeavisideSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::heaviside(Tensor self, Tensor values) -> (Tensor)''' pass class ATenHingeEmbeddingLossSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::hinge_embedding_loss(Tensor self, Tensor target, float margin=1., int reduction=1) -> (Tensor)''' pass class ATenHistcSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::histc(Tensor self, int bins=100, Scalar min=0, Scalar max=0) -> (Tensor)''' pass class ATenHistogramSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::histogram.bins_tensor(Tensor self, Tensor bins, *, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor bin_edges) aten::histogram.bin_ct(Tensor self, int bins=100, *, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor bin_edges)''' pass class ATenHistogramddSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::histogramdd(Tensor self, int[] bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges) aten::histogramdd.int_bins(Tensor self, int bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges) aten::histogramdd.TensorList_bins(Tensor self, Tensor[] bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges)''' pass class ATenHistogramddBinEdgesSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_histogramdd_bin_edges(Tensor self, int[] bins, *, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor[])''' pass class ATenHistogramddFromBinCtsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_histogramdd_from_bin_cts(Tensor self, int[] bins, *, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor)''' pass class ATenHistogramddFromBinTensorsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_histogramdd_from_bin_tensors(Tensor self, Tensor[] bins, *, Tensor? weight=None, bool density=False) -> (Tensor)''' pass class ATenHsplitSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::hsplit.int(Tensor(a -> *) self, int sections) -> (Tensor[]) aten::hsplit.array(Tensor(a -> *) self, int[] indices) -> (Tensor[])''' pass class ATenHspmmSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::hspmm(Tensor mat1, Tensor mat2) -> (Tensor)''' pass class ATenHstackSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::hstack(Tensor[] tensors) -> (Tensor)''' pass class ATenHuberLossSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::huber_loss(Tensor self, Tensor target, int reduction=1, float delta=1.) -> (Tensor)''' pass class ATenHypotSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::hypot(Tensor self, Tensor other) -> (Tensor)''' pass class ATenI0Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::i0(Tensor self) -> (Tensor)''' pass class ATenIgammaSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::igamma(Tensor self, Tensor other) -> (Tensor)''' pass class ATenIgammacSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::igammac(Tensor self, Tensor other) -> (Tensor)''' pass class ATenIm2colSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::im2col(Tensor self, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> (Tensor)''' pass class ATenImagSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::imag(Tensor(a) self) -> (Tensor(a))''' pass class ATenIndexSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::index.Tensor(Tensor self, Tensor?[] indices) -> (Tensor) aten::index.Tensor_hacked_twin(Tensor self, Tensor[] indices) -> (Tensor)''' pass class ATenIndexAddSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::index_add(Tensor self, int dim, Tensor index, Tensor source, *, Scalar alpha=1) -> (Tensor) aten::index_add.dimname(Tensor self, str dim, Tensor index, Tensor source, *, Scalar alpha=1) -> (Tensor)''' pass class ATenIndexCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::index_copy(Tensor self, int dim, Tensor index, Tensor source) -> (Tensor) aten::index_copy.dimname(Tensor self, str dim, Tensor index, Tensor source) -> (Tensor)''' pass class ATenIndexFillSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::index_fill.Dimname_Scalar(Tensor self, str dim, Tensor index, Scalar value) -> (Tensor) aten::index_fill.Dimname_Tensor(Tensor self, str dim, Tensor index, Tensor value) -> (Tensor) aten::index_fill.int_Scalar(Tensor self, int dim, Tensor index, Scalar value) -> (Tensor) aten::index_fill.int_Tensor(Tensor self, int dim, Tensor index, Tensor value) -> (Tensor)''' pass class ATenIndexPutSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::index_put(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False) -> (Tensor) aten::index_put.hacked_twin(Tensor self, Tensor[] indices, Tensor values, bool accumulate=False) -> (Tensor)''' pass class ATenIndexPutImplSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_index_put_impl.functional(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False, bool unsafe=False) -> (Tensor)''' pass class ATenIndexReduceSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::index_reduce(Tensor self, int dim, Tensor index, Tensor source, str reduce, *, bool include_self=True) -> (Tensor)''' pass class ATenIndexSelectSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::index_select(Tensor self, int dim, Tensor index) -> (Tensor) aten::index_select.dimname(Tensor self, str dim, Tensor index) -> (Tensor)''' pass class ATenIndicesSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::indices(Tensor(a) self) -> (Tensor(a)) aten::_indices(Tensor(a) self) -> (Tensor(a))''' pass class ATenIndicesCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::indices_copy(Tensor self) -> (Tensor) aten::_indices_copy(Tensor self) -> (Tensor)''' pass class ATenInnerSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::inner(Tensor self, Tensor other) -> (Tensor)''' pass class ATenInstanceNormSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::instance_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool use_input_stats, float momentum, float eps, bool cudnn_enabled) -> (Tensor)''' pass class ATenIntReprSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::int_repr(Tensor self) -> (Tensor)''' pass class ATenInterpolateSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::__interpolate.scale_list(Tensor input, int? size=None, float[]? scale_factor=None, str mode="nearest", bool? align_corners=None, bool? recompute_scale_factor=None, bool antialias=False) -> (Tensor) aten::__interpolate.size_list_scale_list(Tensor input, int[]? size=None, float[]? scale_factor=None, str mode="nearest", bool? align_corners=None, bool? recompute_scale_factor=None, bool antialias=False) -> (Tensor) aten::__interpolate(Tensor input, int? size=None, float? scale_factor=None, str mode="nearest", bool? align_corners=None, bool? recompute_scale_factor=None, bool antialias=False) -> (Tensor) aten::__interpolate.size_list(Tensor input, int[]? size=None, float? scale_factor=None, str mode="nearest", bool? align_corners=None, bool? recompute_scale_factor=None, bool antialias=False) -> (Tensor)''' pass class ATenInverseSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::inverse(Tensor self) -> (Tensor)''' pass class ATenIstftSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::istft(Tensor self, int n_fft, int? hop_length=None, int? win_length=None, Tensor? window=None, bool center=True, bool normalized=False, bool? onesided=None, int? length=None, bool return_complex=False) -> (Tensor)''' pass class ATenKeysSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::keys.Tensor(Dict(Tensor, t) self) -> (Tensor[](*))''' pass class ATenKlDivSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::kl_div(Tensor self, Tensor target, int reduction=1, *, bool log_target=False) -> (Tensor)''' pass class ATenKronSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::kron(Tensor self, Tensor other) -> (Tensor)''' pass class ATenKthvalueSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::kthvalue(Tensor self, int k, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices) aten::kthvalue.dimname(Tensor self, int k, str dim, bool keepdim=False) -> (Tensor values, Tensor indices) aten::kthvalue.values(Tensor self, int k, int dim=-1, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)''' pass class ATenL1LossSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::l1_loss(Tensor self, Tensor target, int reduction=1) -> (Tensor)''' pass class ATenLayerNormSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::layer_norm(Tensor input, int[] normalized_shape, Tensor? weight=None, Tensor? bias=None, float eps=1.0000000000000001e-05, bool cudnn_enable=True) -> (Tensor)''' pass class ATenLcmSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::lcm(Tensor self, Tensor other) -> (Tensor)''' pass class ATenLdexpSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::ldexp.Tensor(Tensor self, Tensor other) -> (Tensor)''' pass class ATenLeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::le.Tensor(Tensor self, Tensor other) -> (Tensor) aten::le.Scalar(Tensor self, Scalar other) -> (Tensor)''' pass class ATenLeakyReluSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::leaky_relu(Tensor self, Scalar negative_slope=0.01) -> (Tensor)''' pass class ATenLerpSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::lerp.Scalar(Tensor self, Tensor end, Scalar weight) -> (Tensor) aten::lerp.Tensor(Tensor self, Tensor end, Tensor weight) -> (Tensor)''' pass class ATenLessSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::less.Scalar(Tensor self, Scalar other) -> (Tensor) aten::less.Tensor(Tensor self, Tensor other) -> (Tensor)''' pass class ATenLessEqualSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::less_equal.Scalar(Tensor self, Scalar other) -> (Tensor) aten::less_equal.Tensor(Tensor self, Tensor other) -> (Tensor)''' pass class ATenLgammaSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::lgamma(Tensor self) -> (Tensor)''' pass class ATenLiftSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::lift(Tensor self) -> (Tensor)''' pass class ATenLinalgCholeskySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_cholesky(Tensor self, *, bool upper=False) -> (Tensor)''' pass class ATenLinalgCholeskyExSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_cholesky_ex(Tensor self, *, bool upper=False, bool check_errors=False) -> (Tensor L, Tensor info) aten::linalg_cholesky_ex.L(Tensor self, *, bool upper=False, bool check_errors=False, Tensor(a!) L, Tensor(b!) info) -> (Tensor(a!) L, Tensor(b!) info)''' pass class ATenLinalgCondSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_cond(Tensor self, Scalar? p=None) -> (Tensor) aten::linalg_cond.p_str(Tensor self, str p) -> (Tensor)''' pass class ATenLinalgCrossSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_cross(Tensor self, Tensor other, *, int dim=-1) -> (Tensor)''' pass class ATenLinalgDetSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_det(Tensor self) -> (Tensor)''' pass class ATenLinalgDiagonalSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_diagonal(Tensor(a) A, *, int offset=0, int dim1=-2, int dim2=-1) -> (Tensor(a))''' pass class ATenLinalgEigSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_eig(Tensor self) -> (Tensor eigenvalues, Tensor eigenvectors) aten::linalg_eig.out(Tensor self, *, Tensor(a!) eigenvalues, Tensor(b!) eigenvectors) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors)''' pass class ATenLinalgEighSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_eigh(Tensor self, str UPLO="L") -> (Tensor eigenvalues, Tensor eigenvectors) aten::linalg_eigh.eigvals(Tensor self, str UPLO="L", *, Tensor(a!) eigvals, Tensor(b!) eigvecs) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors)''' pass class ATenLinalgEigvalsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_eigvals(Tensor self) -> (Tensor)''' pass class ATenLinalgEigvalshSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_eigvalsh(Tensor self, str UPLO="L") -> (Tensor)''' pass class ATenLinalgHouseholderProductSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_householder_product(Tensor input, Tensor tau) -> (Tensor)''' pass class ATenLinalgInvSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_inv(Tensor self) -> (Tensor)''' pass class ATenLinalgInvExSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_inv_ex(Tensor self, *, bool check_errors=False) -> (Tensor inverse, Tensor info) aten::linalg_inv_ex.inverse(Tensor self, *, bool check_errors=False, Tensor(a!) inverse, Tensor(b!) info) -> (Tensor(a!) inverse, Tensor(b!) info)''' pass class ATenLinalgInvOutHelperSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_linalg_inv_out_helper.functional(Tensor self, Tensor infos_lu, Tensor infos_getri) -> (Tensor, Tensor infos_lu_out, Tensor infos_getri_out)''' pass class ATenLinalgLdlFactorSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_ldl_factor(Tensor self, *, bool hermitian=False) -> (Tensor LD, Tensor pivots) aten::linalg_ldl_factor.out(Tensor self, *, bool hermitian=False, Tensor(a!) LD, Tensor(b!) pivots) -> (Tensor(a!) LD, Tensor(b!) pivots)''' pass class ATenLinalgLdlFactorExSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_ldl_factor_ex(Tensor self, *, bool hermitian=False, bool check_errors=False) -> (Tensor LD, Tensor pivots, Tensor info) aten::linalg_ldl_factor_ex.out(Tensor self, *, bool hermitian=False, bool check_errors=False, Tensor(a!) LD, Tensor(b!) pivots, Tensor(c!) info) -> (Tensor(a!) LD, Tensor(b!) pivots, Tensor(c!) info)''' pass class ATenLinalgLdlSolveSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_ldl_solve(Tensor LD, Tensor pivots, Tensor B, *, bool hermitian=False) -> (Tensor)''' pass class ATenLinalgLstsqSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_lstsq(Tensor self, Tensor b, float? rcond=None, *, str? driver=None) -> (Tensor solution, Tensor residuals, Tensor rank, Tensor singular_values) aten::linalg_lstsq.out(Tensor self, Tensor b, float? rcond=None, *, str? driver=None, Tensor(a!) solution, Tensor(b!) residuals, Tensor(c!) rank, Tensor(d!) singular_values) -> (Tensor(a!) solution, Tensor(b!) residuals, Tensor(c!) rank, Tensor(d!) singular_values)''' pass class ATenLinalgLuSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_lu(Tensor A, *, bool pivot=True) -> (Tensor P, Tensor L, Tensor U) aten::linalg_lu.out(Tensor A, *, bool pivot=True, Tensor(a!) P, Tensor(b!) L, Tensor(c!) U) -> (Tensor(a!) P, Tensor(b!) L, Tensor(c!) U)''' pass class ATenLinalgLuFactorSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_lu_factor(Tensor A, *, bool pivot=True) -> (Tensor LU, Tensor pivots) aten::linalg_lu_factor.out(Tensor A, *, bool pivot=True, Tensor(a!) LU, Tensor(b!) pivots) -> (Tensor(a!) LU, Tensor(b!) pivots)''' pass class ATenLinalgLuFactorExSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_lu_factor_ex(Tensor A, *, bool pivot=True, bool check_errors=False) -> (Tensor LU, Tensor pivots, Tensor info) aten::linalg_lu_factor_ex.out(Tensor A, *, bool pivot=True, bool check_errors=False, Tensor(a!) LU, Tensor(b!) pivots, Tensor(c!) info) -> (Tensor(a!) LU, Tensor(b!) pivots, Tensor(c!) info)''' pass class ATenLinalgMatmulSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_matmul(Tensor self, Tensor other) -> (Tensor)''' pass class ATenLinalgMatrixExpSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_matrix_exp(Tensor self) -> (Tensor)''' pass class ATenLinalgMatrixNormSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_matrix_norm(Tensor self, Scalar ord, int[] dim=[-2, -1], bool keepdim=False, *, int? dtype=None) -> (Tensor) aten::linalg_matrix_norm.str_ord(Tensor self, str ord="fro", int[] dim=[-2, -1], bool keepdim=False, *, int? dtype=None) -> (Tensor)''' pass class ATenLinalgMatrixPowerSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_matrix_power(Tensor self, int n) -> (Tensor)''' pass class ATenLinalgMatrixRankSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_matrix_rank(Tensor self, float tol, bool hermitian=False) -> (Tensor) aten::linalg_matrix_rank.tol_tensor(Tensor input, Tensor tol, bool hermitian=False) -> (Tensor) aten::linalg_matrix_rank.atol_rtol_tensor(Tensor input, *, Tensor? atol=None, Tensor? rtol=None, bool hermitian=False) -> (Tensor) aten::linalg_matrix_rank.atol_rtol_float(Tensor self, *, float? atol=None, float? rtol=None, bool hermitian=False) -> (Tensor)''' pass class ATenLinalgMultiDotSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_multi_dot(Tensor[] tensors) -> (Tensor)''' pass class ATenLinalgNormSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_norm(Tensor self, Scalar? ord=None, int[1]? dim=None, bool keepdim=False, *, int? dtype=None) -> (Tensor) aten::linalg_norm.ord_str(Tensor self, str ord, int[1]? dim=None, bool keepdim=False, *, int? dtype=None) -> (Tensor)''' pass class ATenLinalgPinvSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_pinv.atol_rtol_tensor(Tensor self, *, Tensor? atol=None, Tensor? rtol=None, bool hermitian=False) -> (Tensor) aten::linalg_pinv.atol_rtol_float(Tensor self, *, float? atol=None, float? rtol=None, bool hermitian=False) -> (Tensor) aten::linalg_pinv(Tensor self, float rcond, bool hermitian=False) -> (Tensor) aten::linalg_pinv.rcond_tensor(Tensor self, Tensor rcond, bool hermitian=False) -> (Tensor)''' pass class ATenLinalgQrSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_qr(Tensor A, str mode="reduced") -> (Tensor Q, Tensor R) aten::linalg_qr.out(Tensor A, str mode="reduced", *, Tensor(a!) Q, Tensor(b!) R) -> (Tensor(a!) Q, Tensor(b!) R)''' pass class ATenLinalgQrHelperSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_linalg_qr_helper(Tensor self, str mode) -> (Tensor, Tensor)''' pass class ATenLinalgSlogdetSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_slogdet(Tensor self) -> (Tensor sign, Tensor logabsdet) aten::linalg_slogdet.out(Tensor self, *, Tensor(a!) sign, Tensor(b!) logabsdet) -> (Tensor(a!) sign, Tensor(b!) logabsdet)''' pass class ATenLinalgSolveSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_solve(Tensor input, Tensor other) -> (Tensor)''' pass class ATenLinalgSolveTriangularSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_solve_triangular(Tensor self, Tensor B, *, bool upper, bool left=True, bool unitriangular=False) -> (Tensor)''' pass class ATenLinalgSvdSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_linalg_svd(Tensor A, bool full_matrices=False, bool compute_uv=True) -> (Tensor U, Tensor S, Tensor Vh) aten::_linalg_svd.U(Tensor A, bool full_matrices=False, bool compute_uv=True, *, Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh) -> (Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh) aten::linalg_svd(Tensor A, bool full_matrices=True) -> (Tensor U, Tensor S, Tensor Vh) aten::linalg_svd.U(Tensor A, bool full_matrices=True, *, Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh) -> (Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh)''' pass class ATenLinalgSvdvalsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_svdvals(Tensor A) -> (Tensor)''' pass class ATenLinalgTensorinvSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_tensorinv(Tensor self, int ind=2) -> (Tensor)''' pass class ATenLinalgTensorsolveSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_tensorsolve(Tensor self, Tensor other, int[]? dims=None) -> (Tensor)''' pass class ATenLinalgVanderSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_vander(Tensor x, *, int? N=None) -> (Tensor)''' pass class ATenLinalgVectorNormSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linalg_vector_norm(Tensor self, Scalar ord=2, int[1]? dim=None, bool keepdim=False, *, int? dtype=None) -> (Tensor)''' pass class ATenLinearSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::linear(Tensor input, Tensor weight, Tensor? bias=None) -> (Tensor)''' pass class ATenLogSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::log(Tensor self) -> (Tensor)''' pass class ATenLog10Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::log10(Tensor self) -> (Tensor)''' pass class ATenLog1pSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::log1p(Tensor self) -> (Tensor)''' pass class ATenLog2Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::log2(Tensor self) -> (Tensor)''' pass class ATenLogNormalSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::log_normal.functional(Tensor self, float mean=1., float std=2., *, Generator? generator=None) -> (Tensor)''' pass class ATenLogSigmoidSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::log_sigmoid(Tensor self) -> (Tensor)''' pass class ATenLogSoftmaxSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::log_softmax.int(Tensor self, int dim, int? dtype=None) -> (Tensor) aten::log_softmax.Dimname(Tensor self, str dim, *, int? dtype=None) -> (Tensor) aten::_log_softmax(Tensor self, int dim, bool half_to_float) -> (Tensor)''' pass class ATenLogSoftmaxBackwardDataSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_log_softmax_backward_data(Tensor grad_output, Tensor output, int dim, int input_dtype) -> (Tensor)''' pass class ATenLogaddexpSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::logaddexp(Tensor self, Tensor other) -> (Tensor)''' pass class ATenLogaddexp2Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::logaddexp2(Tensor self, Tensor other) -> (Tensor)''' pass class ATenLogcumsumexpSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::logcumsumexp(Tensor self, int dim) -> (Tensor) aten::logcumsumexp.dimname(Tensor self, str dim) -> (Tensor) aten::_logcumsumexp(Tensor self, int dim) -> (Tensor)''' pass class ATenLogdetSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::logdet(Tensor self) -> (Tensor)''' pass class ATenLogicalAndSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::logical_and(Tensor self, Tensor other) -> (Tensor)''' pass class ATenLogicalNotSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::logical_not(Tensor self) -> (Tensor)''' pass class ATenLogicalOrSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::logical_or(Tensor self, Tensor other) -> (Tensor)''' pass class ATenLogicalXorSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::logical_xor(Tensor self, Tensor other) -> (Tensor)''' pass class ATenLogitSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::logit(Tensor self, float? eps=None) -> (Tensor)''' pass class ATenLogsumexpSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::logsumexp(Tensor self, int[1] dim, bool keepdim=False) -> (Tensor) aten::logsumexp.names(Tensor self, str[1] dim, bool keepdim=False) -> (Tensor)''' pass class ATenLshiftSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::__lshift__.Scalar(Tensor self, Scalar other) -> (Tensor) aten::__lshift__.Tensor(Tensor self, Tensor other) -> (Tensor)''' pass class ATenLstmSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::lstm.input(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor, Tensor) aten::lstm.data(Tensor data, Tensor batch_sizes, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor, Tensor)''' pass class ATenLstmCellSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor, Tensor)''' pass class ATenLstmMpsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_lstm_mps(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor, Tensor, Tensor, Tensor)''' pass class ATenLstsqSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::lstsq(Tensor self, Tensor A) -> (Tensor solution, Tensor QR) aten::lstsq.X(Tensor self, Tensor A, *, Tensor(a!) X, Tensor(b!) qr) -> (Tensor(a!) solution, Tensor(b!) QR)''' pass class ATenLtSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::lt.Tensor(Tensor self, Tensor other) -> (Tensor) aten::lt.Scalar(Tensor self, Scalar other) -> (Tensor)''' pass class ATenLuSolveSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::lu_solve(Tensor self, Tensor LU_data, Tensor LU_pivots) -> (Tensor)''' pass class ATenLuWithInfoSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_lu_with_info(Tensor self, bool pivot=True, bool check_errors=True) -> (Tensor LU, Tensor pivots, Tensor info)''' pass class ATenMHSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::mH(Tensor(a) self) -> (Tensor(a)) aten::mH.a(Tensor(a) self) -> (Tensor(a))''' pass class ATenMTSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::mT(Tensor(a) self) -> (Tensor(a)) aten::mT.a(Tensor(a) self) -> (Tensor(a))''' pass class ATenMakeDualSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_make_dual(Tensor(a) primal, Tensor tangent, int level) -> (Tensor(a))''' pass class ATenMakeDualCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_make_dual_copy(Tensor primal, Tensor tangent, int level) -> (Tensor)''' pass class ATenMakePerChannelQuantizedTensorSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_make_per_channel_quantized_tensor(Tensor self, Tensor scale, Tensor zero_point, int axis) -> (Tensor)''' pass class ATenMakePerTensorQuantizedTensorSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_make_per_tensor_quantized_tensor(Tensor self, float scale, int zero_point) -> (Tensor)''' pass class ATenMarginRankingLossSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::margin_ranking_loss(Tensor input1, Tensor input2, Tensor target, float margin=0., int reduction=1) -> (Tensor)''' pass class ATenMaskedFillSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::masked_fill.Scalar(Tensor self, Tensor mask, Scalar value) -> (Tensor) aten::masked_fill.Tensor(Tensor self, Tensor mask, Tensor value) -> (Tensor)''' pass class ATenMaskedScaleSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_masked_scale(Tensor self, Tensor mask, float scale) -> (Tensor)''' pass class ATenMaskedScatterSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::masked_scatter(Tensor self, Tensor mask, Tensor source) -> (Tensor)''' pass class ATenMaskedSelectSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::masked_select(Tensor self, Tensor mask) -> (Tensor)''' pass class ATenMaskedSoftmaxSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_masked_softmax(Tensor self, Tensor mask, int? dim=None) -> (Tensor)''' pass class ATenMatmulSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::matmul(Tensor self, Tensor other) -> (Tensor)''' pass class ATenMatrixExpSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::matrix_exp(Tensor self) -> (Tensor)''' pass class ATenMatrixHSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::matrix_H(Tensor(a) self) -> (Tensor(a)) aten::matrix_H.a(Tensor(a) self) -> (Tensor(a))''' pass class ATenMatrixPowerSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::matrix_power(Tensor self, int n) -> (Tensor)''' pass class ATenMatrixRankSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::matrix_rank(Tensor self, bool symmetric=False) -> (Tensor) aten::matrix_rank.tol(Tensor self, float tol, bool symmetric=False) -> (Tensor)''' pass class ATenMaxSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::max(Tensor self) -> (Tensor) aten::max.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) aten::max.dim_max(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices) aten::max.names_dim(Tensor self, str dim, bool keepdim=False) -> (Tensor values, Tensor indices) aten::max.names_dim_max(Tensor self, str dim, bool keepdim=False, *, Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices) aten::max.other(Tensor self, Tensor other) -> (Tensor)''' pass class ATenMaxPool1dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::max_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=[0], int[1] dilation=[1], bool ceil_mode=False) -> (Tensor)''' pass class ATenMaxPool1dWithIndicesSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::max_pool1d_with_indices(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=[0], int[1] dilation=[1], bool ceil_mode=False) -> (Tensor, Tensor)''' pass class ATenMaxPool2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], int[2] dilation=[1, 1], bool ceil_mode=False) -> (Tensor)''' pass class ATenMaxPool2dWithIndicesSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::max_pool2d_with_indices(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], int[2] dilation=[1, 1], bool ceil_mode=False) -> (Tensor, Tensor) aten::max_pool2d_with_indices.out(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], int[2] dilation=[1, 1], bool ceil_mode=False, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))''' pass class ATenMaxPool3dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=[0, 0, 0], int[3] dilation=[1, 1, 1], bool ceil_mode=False) -> (Tensor)''' pass class ATenMaxPool3dWithIndicesSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::max_pool3d_with_indices(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=[0, 0, 0], int[3] dilation=[1, 1, 1], bool ceil_mode=False) -> (Tensor, Tensor) aten::max_pool3d_with_indices.out(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=[0, 0, 0], int[3] dilation=[1, 1, 1], bool ceil_mode=False, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))''' pass class ATenMaxUnpool2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::max_unpool2d(Tensor self, Tensor indices, int[2] output_size) -> (Tensor)''' pass class ATenMaxUnpool3dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::max_unpool3d(Tensor self, Tensor indices, int[3] output_size, int[3] stride, int[3] padding) -> (Tensor)''' pass class ATenMaximumSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::maximum(Tensor self, Tensor other) -> (Tensor)''' pass class ATenMeanSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::mean(Tensor self, *, int? dtype=None) -> (Tensor) aten::mean.dim(Tensor self, int[1] dim, bool keepdim=False, *, int? dtype=None) -> (Tensor) aten::mean.names_dim(Tensor self, str[1] dim, bool keepdim=False, *, int? dtype=None) -> (Tensor)''' pass class ATenMedianSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::median(Tensor self) -> (Tensor) aten::median.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) aten::median.dim_values(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) aten::median.names_dim(Tensor self, str dim, bool keepdim=False) -> (Tensor values, Tensor indices) aten::median.names_dim_values(Tensor self, str dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)''' pass class ATenMeshgridSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::meshgrid(Tensor[] tensors) -> (Tensor[]) aten::meshgrid.indexing(Tensor[] tensors, *, str indexing) -> (Tensor[])''' pass class ATenMinSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::min(Tensor self) -> (Tensor) aten::min.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) aten::min.dim_min(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) min, Tensor(b!) min_indices) -> (Tensor(a!) values, Tensor(b!) indices) aten::min.names_dim(Tensor self, str dim, bool keepdim=False) -> (Tensor values, Tensor indices) aten::min.names_dim_min(Tensor self, str dim, bool keepdim=False, *, Tensor(a!) min, Tensor(b!) min_indices) -> (Tensor(a!) values, Tensor(b!) indices) aten::min.other(Tensor self, Tensor other) -> (Tensor)''' pass class ATenMinimumSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::minimum(Tensor self, Tensor other) -> (Tensor)''' pass class ATenMishSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::mish(Tensor self) -> (Tensor)''' pass class ATenMmSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::mm(Tensor self, Tensor mat2) -> (Tensor)''' pass class ATenModeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices) aten::mode.dimname(Tensor self, str dim, bool keepdim=False) -> (Tensor values, Tensor indices) aten::mode.values(Tensor self, int dim=-1, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)''' pass class ATenMoveaxisSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::moveaxis.intlist(Tensor(a) self, int[] source, int[] destination) -> (Tensor(a)) aten::moveaxis.int(Tensor(a) self, int source, int destination) -> (Tensor(a))''' pass class ATenMovedimSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::movedim.intlist(Tensor(a) self, int[] source, int[] destination) -> (Tensor(a)) aten::movedim.int(Tensor(a) self, int source, int destination) -> (Tensor(a))''' pass class ATenMpsConvolutionSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_mps_convolution(Tensor self, Tensor weight, Tensor? bias, int[] padding, int[] stride, int[] dilation, int groups) -> (Tensor)''' pass class ATenMpsConvolutionTransposeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_mps_convolution_transpose(Tensor self, Tensor weight, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups) -> (Tensor)''' pass class ATenMpsLinearSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_mps_linear(Tensor self, Tensor weight, Tensor? bias=None) -> (Tensor)''' pass class ATenMpsLinearBackwardInputSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_mps_linear_backward_input(int[] input_size, Tensor grad_output, Tensor weight) -> (Tensor)''' pass class ATenMpsLinearBackwardWeightsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_mps_linear_backward_weights(Tensor grad_output, Tensor input, Tensor weight, bool bias_defined) -> (Tensor, Tensor)''' pass class ATenMpsMaxPool2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_mps_max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], int[2] dilation=[1, 1], bool ceil_mode=False) -> (Tensor)''' pass class ATenMseLossSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::mse_loss(Tensor self, Tensor target, int reduction=1) -> (Tensor)''' pass class ATenMsortSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::msort(Tensor self) -> (Tensor)''' pass class ATenMulSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::mul.Tensor(Tensor self, Tensor other) -> (Tensor) aten::mul.Scalar(Tensor self, Scalar other) -> (Tensor)''' pass class ATenMultiMarginLossSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::multi_margin_loss(Tensor self, Tensor target, Scalar p=1, Scalar margin=1, Tensor? weight=None, int reduction=1) -> (Tensor)''' pass class ATenMultilabelMarginLossSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::multilabel_margin_loss(Tensor self, Tensor target, int reduction=1) -> (Tensor)''' pass class ATenMultinomialSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::multinomial(Tensor self, int num_samples, bool replacement=False, *, Generator? generator=None) -> (Tensor)''' pass class ATenMultiplySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::multiply.Tensor(Tensor self, Tensor other) -> (Tensor) aten::multiply.Scalar(Tensor self, Scalar other) -> (Tensor)''' pass class ATenMvSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::mv(Tensor self, Tensor vec) -> (Tensor)''' pass class ATenMvlgammaSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::mvlgamma(Tensor self, int p) -> (Tensor)''' pass class ATenNanToNumSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::nan_to_num(Tensor self, float? nan=None, float? posinf=None, float? neginf=None) -> (Tensor)''' pass class ATenNanmeanSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::nanmean(Tensor self, int[1] dim=[], bool keepdim=False, *, int? dtype=None) -> (Tensor)''' pass class ATenNanmedianSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::nanmedian(Tensor self) -> (Tensor) aten::nanmedian.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices) aten::nanmedian.dim_values(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) aten::nanmedian.names_dim(Tensor self, str dim, bool keepdim=False) -> (Tensor values, Tensor indices) aten::nanmedian.names_dim_values(Tensor self, str dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)''' pass class ATenNanquantileSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::nanquantile(Tensor self, Tensor q, int? dim=None, bool keepdim=False, *, str interpolation="linear") -> (Tensor) aten::nanquantile.scalar(Tensor self, float q, int? dim=None, bool keepdim=False, *, str interpolation="linear") -> (Tensor)''' pass class ATenNansumSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::nansum(Tensor self, int[1] dim=[], bool keepdim=False, *, int? dtype=None) -> (Tensor)''' pass class ATenNarrowSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::narrow(Tensor(a) self, int dim, int start, int length) -> (Tensor(a)) aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> (Tensor(a))''' pass class ATenNarrowCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::narrow_copy(Tensor self, int dim, int start, int length) -> (Tensor) aten::narrow_copy.SymInt(Tensor self, int dim, int start, SymInt length) -> (Tensor)''' pass class ATenNativeBatchNormSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor) aten::native_batch_norm.out(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, *, Tensor(a!) out, Tensor(b!) save_mean, Tensor(c!) save_invstd) -> (Tensor(a!), Tensor(b!), Tensor(c!))''' pass class ATenNativeChannelShuffleSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::native_channel_shuffle(Tensor self, int groups) -> (Tensor)''' pass class ATenNativeDropoutSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::native_dropout(Tensor input, float p, bool? train) -> (Tensor, Tensor)''' pass class ATenNativeGroupNormSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::native_group_norm(Tensor input, Tensor? weight, Tensor? bias, int N, int C, int HxW, int group, float eps) -> (Tensor, Tensor, Tensor)''' pass class ATenNativeLayerNormSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::native_layer_norm(Tensor input, int[] normalized_shape, Tensor? weight, Tensor? bias, float eps) -> (Tensor, Tensor, Tensor)''' pass class ATenNativeMultiHeadAttentionSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_native_multi_head_attention(Tensor query, Tensor key, Tensor value, int embed_dim, int num_head, Tensor qkv_weight, Tensor qkv_bias, Tensor proj_weight, Tensor proj_bias, Tensor? mask=None, bool need_weights=True, bool average_attn_weights=True) -> (Tensor, Tensor)''' pass class ATenNativeNormSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::native_norm(Tensor self, Scalar p=2) -> (Tensor) aten::native_norm.ScalarOpt_dim_dtype(Tensor self, Scalar? p, int[1] dim, bool keepdim, int? dtype) -> (Tensor)''' pass class ATenNcfUnsqueezeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_ncf_unsqueeze(Tensor(a) self, int ndim) -> (Tensor(a))''' pass class ATenNcfViewSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_ncf_view(Tensor(a) self, int[] input_shape, int normalized_ndim) -> (Tensor(a))''' pass class ATenNeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::ne.Tensor(Tensor self, Tensor other) -> (Tensor) aten::ne.Scalar(Tensor self, Scalar other) -> (Tensor)''' pass class ATenNegSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::neg(Tensor self) -> (Tensor)''' pass class ATenNegViewSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_neg_view(Tensor(a) self) -> (Tensor(a))''' pass class ATenNegViewCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_neg_view_copy(Tensor self) -> (Tensor)''' pass class ATenNegativeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::negative(Tensor self) -> (Tensor)''' pass class ATenNestedFromPaddedSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_nested_from_padded(Tensor padded, Tensor cpu_nested_shape_example, bool fuse_transform_0213=False) -> (Tensor)''' pass class ATenNestedFromPaddedAndNestedExampleSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_nested_from_padded_and_nested_example(Tensor padded, Tensor nt_example) -> (Tensor)''' pass class ATenNestedTensorSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::nested_tensor(Tensor[] list, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor)''' pass class ATenNestedTensorFromMaskSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_nested_tensor_from_mask(Tensor t, Tensor mask) -> (Tensor)''' pass class ATenNestedTensorLayerNormSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_nested_tensor_layer_norm(Tensor self, Tensor? weight, Tensor? bias, float eps) -> (Tensor)''' pass class ATenNewEmptySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::new_empty(Tensor self, int[] size, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor)''' pass class ATenNewEmptyStridedSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::new_empty_strided(Tensor self, int[] size, int[] stride, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor)''' pass class ATenNewFullSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::new_full(Tensor self, int[] size, Scalar fill_value, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor)''' pass class ATenNewOnesSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::new_ones(Tensor self, int[] size, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor)''' pass class ATenNewZerosSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::new_zeros(Tensor self, int[] size, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None) -> (Tensor)''' pass class ATenNewZerosWithSameFeatureMetaSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_new_zeros_with_same_feature_meta(Tensor self, Tensor other, *, int self_num_batch_dims=0) -> (Tensor)''' pass class ATenNextafterSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::nextafter(Tensor self, Tensor other) -> (Tensor)''' pass class ATenNllLossSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::nll_loss(Tensor self, Tensor target, Tensor? weight=None, int reduction=1, int ignore_index=-100) -> (Tensor)''' pass class ATenNllLoss2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::nll_loss2d(Tensor self, Tensor target, Tensor? weight=None, int reduction=1, int ignore_index=-100) -> (Tensor)''' pass class ATenNllLossNdSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::nll_loss_nd(Tensor self, Tensor target, Tensor? weight=None, int reduction=1, int ignore_index=-100) -> (Tensor)''' pass class ATenNonzeroSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::nonzero(Tensor self) -> (Tensor)''' pass class ATenNonzeroNumpySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::nonzero_numpy(Tensor self) -> (Tensor[])''' pass class ATenNormSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::norm.Scalar(Tensor self, Scalar p=2) -> (Tensor) aten::norm.ScalarOpt_dim(Tensor self, Scalar? p, int[1] dim, bool keepdim=False) -> (Tensor) aten::norm.names_ScalarOpt_dim(Tensor self, Scalar? p, str[1] dim, bool keepdim=False) -> (Tensor) aten::norm.ScalarOpt_dim_dtype(Tensor self, Scalar? p, int[1] dim, bool keepdim, *, int dtype) -> (Tensor) aten::norm.ScalarOpt_dtype(Tensor self, Scalar? p, *, int dtype) -> (Tensor) aten::norm.names_ScalarOpt_dim_dtype(Tensor self, Scalar? p, str[1] dim, bool keepdim, *, int dtype) -> (Tensor)''' pass class ATenNormExceptDimSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::norm_except_dim(Tensor v, int pow=2, int dim=0) -> (Tensor)''' pass class ATenNormalSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::normal.Tensor_float(Tensor mean, float std=1., *, Generator? generator=None) -> (Tensor) aten::normal.float_Tensor(float mean, Tensor std, *, Generator? generator=None) -> (Tensor) aten::normal.Tensor_Tensor(Tensor mean, Tensor std, *, Generator? generator=None) -> (Tensor) aten::normal.functional(Tensor self, float mean=0., float std=1., *, Generator? generator=None) -> (Tensor)''' pass class ATenNotEqualSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::not_equal.Scalar(Tensor self, Scalar other) -> (Tensor) aten::not_equal.Tensor(Tensor self, Tensor other) -> (Tensor)''' pass class ATenNuclearNormSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::nuclear_norm(Tensor self, bool keepdim=False) -> (Tensor) aten::nuclear_norm.dim(Tensor self, int[2] dim, bool keepdim=False) -> (Tensor)''' pass class ATenNumpyTSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::numpy_T(Tensor(a) self) -> (Tensor(a)) aten::numpy_T.a(Tensor(a) self) -> (Tensor(a))''' pass class ATenOneHotSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::one_hot(Tensor self, int num_classes=-1) -> (Tensor)''' pass class ATenOnesLikeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::ones_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor)''' pass class ATenOrSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::__or__.Scalar(Tensor self, Scalar other) -> (Tensor) aten::__or__.Tensor(Tensor self, Tensor other) -> (Tensor)''' pass class ATenOrgqrSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::orgqr(Tensor self, Tensor input2) -> (Tensor)''' pass class ATenOrmqrSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::ormqr(Tensor self, Tensor input2, Tensor input3, bool left=True, bool transpose=False) -> (Tensor)''' pass class ATenOuterSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::outer(Tensor self, Tensor vec2) -> (Tensor)''' pass class ATenPackPaddedSequenceSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_pack_padded_sequence(Tensor input, Tensor lengths, bool batch_first) -> (Tensor, Tensor)''' pass class ATenPackSequenceSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_pack_sequence(Tensor output, Tensor batch_sizes, Tensor? sorted_indices, Tensor? unsorted_indices) -> (Tensor, Tensor, Tensor?, Tensor?)''' pass class ATenPadSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::pad(Tensor self, int[] pad, str mode="constant", float? value=None) -> (Tensor)''' pass class ATenPadCircularSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_pad_circular(Tensor self, int[] pad) -> (Tensor)''' pass class ATenPadEnumSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_pad_enum(Tensor self, int[] pad, int mode, float? value=None) -> (Tensor)''' pass class ATenPadPackedSequenceSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_pad_packed_sequence(Tensor data, Tensor batch_sizes, bool batch_first, Scalar padding_value, int total_length) -> (Tensor, Tensor)''' pass class ATenPadSequenceSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::pad_sequence(Tensor[] sequences, bool batch_first=False, float padding_value=0.) -> (Tensor)''' pass class ATenPairwiseDistanceSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::pairwise_distance(Tensor x1, Tensor x2, float p=2., float eps=9.9999999999999995e-07, bool keepdim=False) -> (Tensor)''' pass class ATenPdistSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::pdist(Tensor self, float p=2.) -> (Tensor)''' pass class ATenPermuteSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::permute(Tensor(a) self, int[] dims) -> (Tensor(a))''' pass class ATenPermuteCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::permute_copy(Tensor self, int[] dims) -> (Tensor)''' pass class ATenPinMemorySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::pin_memory(Tensor(a) self, Device? device=None) -> (Tensor(a)) aten::_pin_memory(Tensor self, Device? device=None) -> (Tensor)''' pass class ATenPinverseSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::pinverse(Tensor self, float rcond=1.0000000000000001e-15) -> (Tensor)''' pass class ATenPixelShuffleSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::pixel_shuffle(Tensor self, int upscale_factor) -> (Tensor)''' pass class ATenPixelUnshuffleSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::pixel_unshuffle(Tensor self, int downscale_factor) -> (Tensor)''' pass class ATenPoissonSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::poisson(Tensor self, Generator? generator=None) -> (Tensor)''' pass class ATenPoissonNllLossSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::poisson_nll_loss(Tensor input, Tensor target, bool log_input, bool full, float eps, int reduction) -> (Tensor)''' pass class ATenPolarSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::polar(Tensor abs, Tensor angle) -> (Tensor)''' pass class ATenPolygammaSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::polygamma(int n, Tensor self) -> (Tensor)''' pass class ATenPositiveSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::positive(Tensor(a) self) -> (Tensor(a))''' pass class ATenPowSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::pow.Tensor_Tensor(Tensor self, Tensor exponent) -> (Tensor) aten::pow.Tensor_Scalar(Tensor self, Scalar exponent) -> (Tensor) aten::pow.Scalar(Scalar self, Tensor exponent) -> (Tensor)''' pass class ATenPreluSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::prelu(Tensor self, Tensor weight) -> (Tensor)''' pass class ATenProdSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::prod(Tensor self, *, int? dtype=None) -> (Tensor) aten::prod.dim_int(Tensor self, int dim, bool keepdim=False, *, int? dtype=None) -> (Tensor) aten::prod.dim_Dimname(Tensor self, str dim, bool keepdim=False, *, int? dtype=None) -> (Tensor)''' pass class ATenPutSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::put(Tensor self, Tensor index, Tensor source, bool accumulate=False) -> (Tensor)''' pass class ATenQPerChannelScalesSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::q_per_channel_scales(Tensor self) -> (Tensor)''' pass class ATenQPerChannelZeroPointsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::q_per_channel_zero_points(Tensor self) -> (Tensor)''' pass class ATenQrSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::qr(Tensor self, bool some=True) -> (Tensor Q, Tensor R) aten::qr.Q(Tensor self, bool some=True, *, Tensor(a!) Q, Tensor(b!) R) -> (Tensor(a!) Q, Tensor(b!) R)''' pass class ATenQuantileSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::quantile(Tensor self, Tensor q, int? dim=None, bool keepdim=False, *, str interpolation="linear") -> (Tensor) aten::quantile.scalar(Tensor self, float q, int? dim=None, bool keepdim=False, *, str interpolation="linear") -> (Tensor)''' pass class ATenQuantizePerChannelSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::quantize_per_channel(Tensor self, Tensor scales, Tensor zero_points, int axis, int dtype) -> (Tensor)''' pass class ATenQuantizePerTensorSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::quantize_per_tensor(Tensor self, float scale, int zero_point, int dtype) -> (Tensor) aten::quantize_per_tensor.tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, int dtype) -> (Tensor) aten::quantize_per_tensor.tensors(Tensor[] tensors, Tensor scales, Tensor zero_points, int dtype) -> (Tensor[])''' pass class ATenQuantizePerTensorDynamicSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::quantize_per_tensor_dynamic(Tensor self, int dtype, bool reduce_range) -> (Tensor)''' pass class ATenQuantizedBatchNormSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::quantized_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor var, float eps, float output_scale, int output_zero_point) -> (Tensor)''' pass class ATenQuantizedGruSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::quantized_gru.input(Tensor input, Tensor hx, __torch__.torch.classes.rnn.CellParamsBase[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor) aten::quantized_gru.data(Tensor data, Tensor batch_sizes, Tensor hx, __torch__.torch.classes.rnn.CellParamsBase[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor) aten::quantized_gru.input_legacy(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor) aten::quantized_gru.data_legacy(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)''' pass class ATenQuantizedGruCellSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::quantized_gru_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> (Tensor)''' pass class ATenQuantizedLstmSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::quantized_lstm.input(Tensor input, Tensor[] hx, __torch__.torch.classes.rnn.CellParamsBase[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first, *, int? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor) aten::quantized_lstm.data(Tensor data, Tensor batch_sizes, Tensor[] hx, __torch__.torch.classes.rnn.CellParamsBase[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, *, int? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor) aten::quantized_lstm.input_legacy(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first, *, int? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor) aten::quantized_lstm.data_legacy(Tensor data, Tensor batch_sizes, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, *, int? dtype=None, bool use_dynamic=False) -> (Tensor, Tensor, Tensor)''' pass class ATenQuantizedLstmCellSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::quantized_lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> (Tensor, Tensor)''' pass class ATenQuantizedMaxPool1dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::quantized_max_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=[0], int[1] dilation=[1], bool ceil_mode=False) -> (Tensor)''' pass class ATenQuantizedMaxPool2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::quantized_max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], int[2] dilation=[1, 1], bool ceil_mode=False) -> (Tensor)''' pass class ATenQuantizedRnnReluCellSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::quantized_rnn_relu_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> (Tensor)''' pass class ATenQuantizedRnnTanhCellSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::quantized_rnn_tanh_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> (Tensor)''' pass class ATenRad2degSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::rad2deg(Tensor self) -> (Tensor)''' pass class ATenRandLikeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::rand_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor)''' pass class ATenRandintLikeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::randint_like(Tensor self, int high, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor) aten::randint_like.low_dtype(Tensor self, int low, int high, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor)''' pass class ATenRandnLikeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::randn_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor)''' pass class ATenRandomSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::random.from_functional(Tensor self, int from, int? to, *, Generator? generator=None) -> (Tensor) aten::random.to_functional(Tensor self, int to, *, Generator? generator=None) -> (Tensor) aten::random.functional(Tensor self, *, Generator? generator=None) -> (Tensor)''' pass class ATenRavelSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::ravel(Tensor(a) self) -> (Tensor(a))''' pass class ATenRealSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::real(Tensor(a) self) -> (Tensor(a))''' pass class ATenReciprocalSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::reciprocal(Tensor self) -> (Tensor)''' pass class ATenRefineNamesSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::refine_names(Tensor(a) self, str[] names) -> (Tensor(a))''' pass class ATenReflectionPad1dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::reflection_pad1d(Tensor self, int[2] padding) -> (Tensor)''' pass class ATenReflectionPad2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::reflection_pad2d(Tensor self, int[4] padding) -> (Tensor)''' pass class ATenReflectionPad3dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::reflection_pad3d(Tensor self, int[6] padding) -> (Tensor)''' pass class ATenReluSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::relu(Tensor self) -> (Tensor)''' pass class ATenRelu6Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::relu6(Tensor self) -> (Tensor)''' pass class ATenRemainderSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::remainder.Tensor(Tensor self, Tensor other) -> (Tensor) aten::remainder.Scalar_Tensor(Scalar self, Tensor other) -> (Tensor) aten::remainder.Scalar(Tensor self, Scalar other) -> (Tensor)''' pass class ATenRemoveBatchDimSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_remove_batch_dim(Tensor self, int level, int batch_size, int out_dim) -> (Tensor)''' pass class ATenRenameSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::rename(Tensor(a) self, str[]? names) -> (Tensor(a))''' pass class ATenRenormSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::renorm(Tensor self, Scalar p, int dim, Scalar maxnorm) -> (Tensor)''' pass class ATenRepeatSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::repeat(Tensor self, int[] repeats) -> (Tensor)''' pass class ATenRepeatInterleaveSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::repeat_interleave.Tensor(Tensor repeats, *, int? output_size=None) -> (Tensor) aten::repeat_interleave.self_Tensor(Tensor self, Tensor repeats, int? dim=None, *, int? output_size=None) -> (Tensor) aten::repeat_interleave.self_int(Tensor self, int repeats, int? dim=None, *, int? output_size=None) -> (Tensor)''' pass class ATenReplicationPad1dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::replication_pad1d(Tensor self, int[2] padding) -> (Tensor)''' pass class ATenReplicationPad2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::replication_pad2d(Tensor self, int[4] padding) -> (Tensor)''' pass class ATenReplicationPad3dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::replication_pad3d(Tensor self, int[6] padding) -> (Tensor)''' pass class ATenReshapeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::reshape(Tensor(a) self, int[] shape) -> (Tensor(a))''' pass class ATenReshapeAliasSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_reshape_alias(Tensor(a) self, int[] size, int[] stride) -> (Tensor(a))''' pass class ATenReshapeAliasCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_reshape_alias_copy(Tensor self, int[] size, int[] stride) -> (Tensor)''' pass class ATenReshapeAsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::reshape_as(Tensor(a) self, Tensor other) -> (Tensor(a))''' pass class ATenReshapeFromTensorSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_reshape_from_tensor(Tensor self, Tensor shape) -> (Tensor)''' pass class ATenResizeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::resize.functional(Tensor self, int[] size, *, int? memory_format=None) -> (Tensor)''' pass class ATenResizeAsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::resize_as.functional(Tensor self, Tensor the_template, *, int? memory_format=None) -> (Tensor)''' pass class ATenResizeOutputSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_resize_output.functional(Tensor self, int[] size, Device device) -> (Tensor)''' pass class ATenResolveConjSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::resolve_conj(Tensor(a) self) -> (Tensor(a))''' pass class ATenResolveNegSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::resolve_neg(Tensor(a) self) -> (Tensor(a))''' pass class ATenRnnReluSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::rnn_relu.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor) aten::rnn_relu.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)''' pass class ATenRnnReluCellSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::rnn_relu_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor)''' pass class ATenRnnTanhSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::rnn_tanh.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor) aten::rnn_tanh.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)''' pass class ATenRnnTanhCellSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::rnn_tanh_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor)''' pass class ATenRollSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)''' pass class ATenRot90Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::rot90(Tensor self, int k=1, int[] dims=[0, 1]) -> (Tensor)''' pass class ATenRoundSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::round(Tensor self) -> (Tensor) aten::round.decimals(Tensor self, *, int decimals) -> (Tensor)''' pass class ATenRowIndicesSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::row_indices(Tensor(a) self) -> (Tensor(a))''' pass class ATenRowIndicesCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::row_indices_copy(Tensor self) -> (Tensor)''' pass class ATenRowStackSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::row_stack(Tensor[] tensors) -> (Tensor)''' pass class ATenRowwisePruneSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_rowwise_prune(Tensor weight, Tensor mask, int compressed_indices_dtype) -> (Tensor, Tensor)''' pass class ATenRreluSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::rrelu(Tensor self, Scalar lower=0.125, Scalar upper=0.33333333333333331, bool training=False, Generator? generator=None) -> (Tensor)''' pass class ATenRreluWithNoiseSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::rrelu_with_noise(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.33333333333333331, bool training=False, Generator? generator=None) -> (Tensor)''' pass class ATenRshiftSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::__rshift__.Scalar(Tensor self, Scalar other) -> (Tensor) aten::__rshift__.Tensor(Tensor self, Tensor other) -> (Tensor)''' pass class ATenRsqrtSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::rsqrt(Tensor self) -> (Tensor)''' pass class ATenRsubSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::rsub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> (Tensor) aten::rsub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor)''' pass class ATenSampleDirichletSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_sample_dirichlet(Tensor self, Generator? generator=None) -> (Tensor)''' pass class ATenScatterSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::scatter.src(Tensor self, int dim, Tensor index, Tensor src) -> (Tensor) aten::scatter.value(Tensor self, int dim, Tensor index, Scalar value) -> (Tensor) aten::scatter.reduce(Tensor self, int dim, Tensor index, Tensor src, *, str reduce) -> (Tensor) aten::scatter.value_reduce(Tensor self, int dim, Tensor index, Scalar value, *, str reduce) -> (Tensor) aten::scatter.dimname_src(Tensor self, str dim, Tensor index, Tensor src) -> (Tensor) aten::scatter.dimname_value(Tensor self, str dim, Tensor index, Scalar value) -> (Tensor)''' pass class ATenScatterAddSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::scatter_add(Tensor self, int dim, Tensor index, Tensor src) -> (Tensor) aten::scatter_add.dimname(Tensor self, str dim, Tensor index, Tensor src) -> (Tensor)''' pass class ATenScatterReduceSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::scatter_reduce.two(Tensor self, int dim, Tensor index, Tensor src, str reduce, *, bool include_self=True) -> (Tensor)''' pass class ATenSearchsortedSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::searchsorted.Tensor(Tensor sorted_sequence, Tensor self, *, bool out_int32=False, bool right=False, str? side=None, Tensor? sorter=None) -> (Tensor) aten::searchsorted.Scalar(Tensor sorted_sequence, Scalar self, *, bool out_int32=False, bool right=False, str? side=None, Tensor? sorter=None) -> (Tensor)''' pass class ATenSegmentReduceSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::segment_reduce(Tensor data, str reduce, *, Tensor? lengths=None, Tensor? indices=None, int axis=0, bool unsafe=False, Scalar? initial=None) -> (Tensor)''' pass class ATenSelectSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a)) aten::select.Dimname(Tensor(a) self, str dim, int index) -> (Tensor(a))''' pass class ATenSelectCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::select_copy.int(Tensor self, int dim, int index) -> (Tensor)''' pass class ATenSelectScatterSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::select_scatter(Tensor self, Tensor src, int dim, int index) -> (Tensor)''' pass class ATenSeluSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::selu(Tensor self) -> (Tensor)''' pass class ATenSetSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::set.source_Storage_functional(Tensor self, Storage source) -> (Tensor) aten::set.source_Storage_storage_offset_functional(Tensor self, Storage source, int storage_offset, int[] size, int[] stride=[]) -> (Tensor) aten::set.source_Tensor_functional(Tensor self, Tensor source) -> (Tensor) aten::set.functional(Tensor self) -> (Tensor)''' pass class ATenSgnSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::sgn(Tensor self) -> (Tensor)''' pass class ATenShapeAsTensorSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_shape_as_tensor(Tensor self) -> (Tensor)''' pass class ATenSigmoidSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::sigmoid(Tensor self) -> (Tensor)''' pass class ATenSignSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::sign(Tensor self) -> (Tensor)''' pass class ATenSignbitSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::signbit(Tensor self) -> (Tensor)''' pass class ATenSiluSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::silu(Tensor self) -> (Tensor)''' pass class ATenSinSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::sin(Tensor self) -> (Tensor)''' pass class ATenSincSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::sinc(Tensor self) -> (Tensor)''' pass class ATenSinhSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::sinh(Tensor self) -> (Tensor)''' pass class ATenSizeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::size(Tensor self) -> (int[])''' pass class ATenSliceSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::slice.Tensor(Tensor(a) self, int dim=0, int? start=None, int? end=None, int step=1) -> (Tensor(a))''' pass class ATenSliceCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::slice_copy.Tensor(Tensor self, int dim=0, int? start=None, int? end=None, int step=1) -> (Tensor)''' pass class ATenSliceScatterSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::slice_scatter(Tensor self, Tensor src, int dim=0, int? start=None, int? end=None, int step=1) -> (Tensor)''' pass class ATenSlogdetSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::slogdet(Tensor self) -> (Tensor sign, Tensor logabsdet)''' pass class ATenSlowConv3dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::slow_conv3d(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias=None, int[3] stride=[1, 1, 1], int[3] padding=[0, 0, 0]) -> (Tensor)''' pass class ATenSlowConvDilated2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::slow_conv_dilated2d(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=[1, 1], int[2] padding=[0, 0], int[2] dilation=[1, 1]) -> (Tensor)''' pass class ATenSlowConvDilated3dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::slow_conv_dilated3d(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias=None, int[3] stride=[1, 1, 1], int[3] padding=[0, 0, 0], int[3] dilation=[1, 1, 1]) -> (Tensor)''' pass class ATenSlowConvTranspose2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::slow_conv_transpose2d(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=[1, 1], int[2] padding=[0, 0], int[2] output_padding=[0, 0], int[2] dilation=[1, 1]) -> (Tensor)''' pass class ATenSlowConvTranspose3dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::slow_conv_transpose3d(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias=None, int[3] stride=[1, 1, 1], int[3] padding=[0, 0, 0], int[3] output_padding=[0, 0, 0], int[3] dilation=[1, 1, 1]) -> (Tensor)''' pass class ATenSmmSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::smm(Tensor self, Tensor mat2) -> (Tensor)''' pass class ATenSmoothL1LossSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::smooth_l1_loss(Tensor self, Tensor target, int reduction=1, float beta=1.) -> (Tensor)''' pass class ATenSobolEngineDrawSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_sobol_engine_draw(Tensor quasi, int n, Tensor sobolstate, int dimension, int num_generated, int? dtype) -> (Tensor, Tensor)''' pass class ATenSoftMarginLossSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::soft_margin_loss(Tensor self, Tensor target, int reduction=1) -> (Tensor)''' pass class ATenSoftmaxSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::softmax.int(Tensor self, int dim, int? dtype=None) -> (Tensor) aten::softmax.Dimname(Tensor self, str dim, *, int? dtype=None) -> (Tensor) aten::_softmax(Tensor self, int dim, bool half_to_float) -> (Tensor)''' pass class ATenSoftmaxBackwardDataSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_softmax_backward_data(Tensor grad_output, Tensor output, int dim, int input_dtype) -> (Tensor)''' pass class ATenSoftplusSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::softplus(Tensor self, Scalar beta=1, Scalar threshold=20) -> (Tensor)''' pass class ATenSoftshrinkSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::softshrink(Tensor self, Scalar lambd=0.5) -> (Tensor)''' pass class ATenSortSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::sort.stable(Tensor self, *, bool? stable, int dim=-1, bool descending=False) -> (Tensor values, Tensor indices) aten::sort.values_stable(Tensor self, *, bool? stable, int dim=-1, bool descending=False, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) aten::sort(Tensor self, int dim=-1, bool descending=False) -> (Tensor values, Tensor indices) aten::sort.values(Tensor self, int dim=-1, bool descending=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) aten::sort.dimname(Tensor self, str dim, bool descending=False) -> (Tensor values, Tensor indices) aten::sort.dimname_values(Tensor self, str dim, bool descending=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices) aten::sort.dimname_stable(Tensor self, *, bool? stable, str dim, bool descending=False) -> (Tensor values, Tensor indices) aten::sort.dimname_values_stable(Tensor self, *, bool? stable, str dim, bool descending=False, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)''' pass class ATenSortedSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::sorted.Tensor(Tensor[](a) input) -> (Tensor[])''' pass class ATenSpecialDigammaSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_digamma(Tensor self) -> (Tensor)''' pass class ATenSpecialEntrSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_entr(Tensor self) -> (Tensor)''' pass class ATenSpecialErfSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_erf(Tensor self) -> (Tensor)''' pass class ATenSpecialErfcSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_erfc(Tensor self) -> (Tensor)''' pass class ATenSpecialErfcxSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_erfcx(Tensor self) -> (Tensor)''' pass class ATenSpecialErfinvSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_erfinv(Tensor self) -> (Tensor)''' pass class ATenSpecialExp2Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_exp2(Tensor self) -> (Tensor)''' pass class ATenSpecialExpitSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_expit(Tensor self) -> (Tensor)''' pass class ATenSpecialExpm1Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_expm1(Tensor self) -> (Tensor)''' pass class ATenSpecialGammaincSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_gammainc(Tensor self, Tensor other) -> (Tensor)''' pass class ATenSpecialGammainccSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_gammaincc(Tensor self, Tensor other) -> (Tensor)''' pass class ATenSpecialGammalnSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_gammaln(Tensor self) -> (Tensor)''' pass class ATenSpecialI0Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_i0(Tensor self) -> (Tensor)''' pass class ATenSpecialI0eSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_i0e(Tensor self) -> (Tensor)''' pass class ATenSpecialI1Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_i1(Tensor self) -> (Tensor)''' pass class ATenSpecialI1eSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_i1e(Tensor self) -> (Tensor)''' pass class ATenSpecialLog1pSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_log1p(Tensor self) -> (Tensor)''' pass class ATenSpecialLogNdtrSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_log_ndtr(Tensor self) -> (Tensor)''' pass class ATenSpecialLogSoftmaxSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_log_softmax(Tensor self, int dim, *, int? dtype=None) -> (Tensor)''' pass class ATenSpecialLogitSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_logit(Tensor self, float? eps=None) -> (Tensor)''' pass class ATenSpecialLogsumexpSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_logsumexp(Tensor self, int[1] dim, bool keepdim=False) -> (Tensor)''' pass class ATenSpecialMultigammalnSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_multigammaln(Tensor self, int p) -> (Tensor)''' pass class ATenSpecialNdtrSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_ndtr(Tensor self) -> (Tensor)''' pass class ATenSpecialNdtriSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_ndtri(Tensor self) -> (Tensor)''' pass class ATenSpecialPolygammaSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_polygamma(int n, Tensor self) -> (Tensor)''' pass class ATenSpecialPsiSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_psi(Tensor self) -> (Tensor)''' pass class ATenSpecialRoundSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_round(Tensor self, *, int decimals=0) -> (Tensor)''' pass class ATenSpecialSincSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_sinc(Tensor self) -> (Tensor)''' pass class ATenSpecialSoftmaxSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_softmax(Tensor self, int dim, int? dtype=None) -> (Tensor)''' pass class ATenSpecialXlog1pySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_xlog1py(Tensor self, Tensor other) -> (Tensor) aten::special_xlog1py.self_scalar(Scalar self, Tensor other) -> (Tensor) aten::special_xlog1py.other_scalar(Tensor self, Scalar other) -> (Tensor)''' pass class ATenSpecialXlogySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_xlogy(Tensor self, Tensor other) -> (Tensor) aten::special_xlogy.self_scalar(Scalar self, Tensor other) -> (Tensor) aten::special_xlogy.other_scalar(Tensor self, Scalar other) -> (Tensor)''' pass class ATenSpecialZetaSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::special_zeta(Tensor self, Tensor other) -> (Tensor) aten::special_zeta.self_scalar(Scalar self, Tensor other) -> (Tensor) aten::special_zeta.other_scalar(Tensor self, Scalar other) -> (Tensor)''' pass class ATenSplitSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::split.Tensor(Tensor(a -> *) self, int split_size, int dim=0) -> (Tensor[]) aten::split.sizes(Tensor(a -> *) self, int[] split_size, int dim=0) -> (Tensor[]) aten::split(Tensor(a -> *) self, int[] split_sizes, int dim=0) -> (Tensor[])''' pass class ATenSplitCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::split_copy.Tensor(Tensor self, int split_size, int dim=0) -> (Tensor[])''' pass class ATenSplitWithSizesSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::split_with_sizes(Tensor(a -> *) self, int[] split_sizes, int dim=0) -> (Tensor[])''' pass class ATenSplitWithSizesCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::split_with_sizes_copy(Tensor self, int[] split_sizes, int dim=0) -> (Tensor[])''' pass class ATenSqrtSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::sqrt(Tensor self) -> (Tensor)''' pass class ATenSquareSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::square(Tensor self) -> (Tensor)''' pass class ATenSqueezeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::squeeze(Tensor(a) self) -> (Tensor(a)) aten::squeeze.dim(Tensor(a) self, int dim) -> (Tensor(a)) aten::squeeze.dimname(Tensor(a) self, str dim) -> (Tensor(a))''' pass class ATenSqueezeCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::squeeze_copy(Tensor self) -> (Tensor) aten::squeeze_copy.dim(Tensor self, int dim) -> (Tensor)''' pass class ATenSspaddmmSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::sspaddmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> (Tensor)''' pass class ATenStackSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::stack(Tensor[] tensors, int dim=0) -> (Tensor) aten::_stack(Tensor[] tensors, int dim=0) -> (Tensor)''' pass class ATenStandardGammaSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_standard_gamma(Tensor self, Generator? generator=None) -> (Tensor)''' pass class ATenStdSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::std(Tensor self, bool unbiased=True) -> (Tensor) aten::std.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor) aten::std.names_dim(Tensor self, str[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor) aten::std.correction(Tensor self, int[1]? dim, *, int? correction, bool keepdim=False) -> (Tensor) aten::std.correction_names(Tensor self, str[1] dim, *, int? correction, bool keepdim=False) -> (Tensor)''' pass class ATenStdMeanSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::std_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor) aten::std_mean.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor) aten::std_mean.names_dim(Tensor self, str[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor) aten::std_mean.correction(Tensor self, int[1]? dim, *, int? correction, bool keepdim=False) -> (Tensor, Tensor) aten::std_mean.correction_names(Tensor self, str[1] dim, *, int? correction, bool keepdim=False) -> (Tensor, Tensor)''' pass class ATenStftSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::stft(Tensor self, int n_fft, int? hop_length=None, int? win_length=None, Tensor? window=None, bool normalized=False, bool? onesided=None, bool? return_complex=None) -> (Tensor) aten::stft.center(Tensor self, int n_fft, int? hop_length=None, int? win_length=None, Tensor? window=None, bool center=True, str pad_mode="reflect", bool normalized=False, bool? onesided=None, bool? return_complex=None) -> (Tensor)''' pass class ATenSubSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::sub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> (Tensor) aten::sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor)''' pass class ATenSubtractSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::subtract.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> (Tensor) aten::subtract.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor)''' pass class ATenSumSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::sum.dim_IntList(Tensor self, int[1] dim, bool keepdim=False, *, int? dtype=None) -> (Tensor) aten::sum(Tensor self, *, int? dtype=None) -> (Tensor) aten::sum.dim_DimnameList(Tensor self, str[1] dim, bool keepdim=False, *, int? dtype=None) -> (Tensor)''' pass class ATenSumToSizeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::sum_to_size(Tensor self, int[] size) -> (Tensor)''' pass class ATenSvdSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::svd(Tensor self, bool some=True, bool compute_uv=True) -> (Tensor U, Tensor S, Tensor V) aten::svd.U(Tensor self, bool some=True, bool compute_uv=True, *, Tensor(a!) U, Tensor(b!) S, Tensor(c!) V) -> (Tensor(a!) U, Tensor(b!) S, Tensor(c!) V)''' pass class ATenSwapaxesSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::swapaxes(Tensor(a) self, int axis0, int axis1) -> (Tensor(a))''' pass class ATenSwapdimsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::swapdims(Tensor(a) self, int dim0, int dim1) -> (Tensor(a))''' pass class ATenSymeigSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::symeig(Tensor self, bool eigenvectors=False, bool upper=True) -> (Tensor eigenvalues, Tensor eigenvectors) aten::symeig.e(Tensor self, bool eigenvectors=False, bool upper=True, *, Tensor(a!) e, Tensor(b!) V) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors)''' pass class ATenSymeigHelperSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_symeig_helper(Tensor self, bool eigenvectors, bool upper) -> (Tensor, Tensor)''' pass class ATenTSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::t(Tensor(a) self) -> (Tensor(a))''' pass class ATenTCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::t_copy(Tensor self) -> (Tensor)''' pass class ATenTakeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::take(Tensor self, Tensor index) -> (Tensor)''' pass class ATenTakeAlongDimSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::take_along_dim(Tensor self, Tensor indices, int? dim=None) -> (Tensor)''' pass class ATenTanSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::tan(Tensor self) -> (Tensor)''' pass class ATenTanhSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::tanh(Tensor self) -> (Tensor)''' pass class ATenTensorSplitSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::tensor_split.sections(Tensor(a -> *) self, int sections, int dim=0) -> (Tensor[]) aten::tensor_split.indices(Tensor(a -> *) self, int[] indices, int dim=0) -> (Tensor[]) aten::tensor_split.tensor_indices_or_sections(Tensor(a -> *) self, Tensor tensor_indices_or_sections, int dim=0) -> (Tensor[])''' pass class ATenTensorToListSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_tensor_to_list(Tensor self) -> (int[])''' pass class ATenTensordotSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::tensordot(Tensor self, Tensor other, int[] dims_self, int[] dims_other) -> (Tensor)''' pass class ATenThnnConv2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::thnn_conv2d(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias=None, int[2] stride=[1, 1], int[2] padding=[0, 0]) -> (Tensor)''' pass class ATenThnnFusedGruCellSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_thnn_fused_gru_cell(Tensor input_gates, Tensor hidden_gates, Tensor hx, Tensor? input_bias=None, Tensor? hidden_bias=None) -> (Tensor, Tensor)''' pass class ATenThnnFusedLstmCellSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_thnn_fused_lstm_cell(Tensor input_gates, Tensor hidden_gates, Tensor cx, Tensor? input_bias=None, Tensor? hidden_bias=None) -> (Tensor, Tensor, Tensor)''' pass class ATenThnnFusedLstmCellBackwardImplSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_thnn_fused_lstm_cell_backward_impl(Tensor? grad_hy, Tensor? grad_cy, Tensor cx, Tensor cy, Tensor workspace, bool has_bias) -> (Tensor, Tensor, Tensor)''' pass class ATenThresholdSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::threshold(Tensor self, Scalar threshold, Scalar value) -> (Tensor)''' pass class ATenTileSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::tile(Tensor self, int[] dims) -> (Tensor)''' pass class ATenToSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::to.device(Tensor(a) self, Device device, int dtype, bool non_blocking=False, bool copy=False, int? memory_format=None) -> (Tensor(a)) aten::to.dtype(Tensor(a) self, int dtype, bool non_blocking=False, bool copy=False, int? memory_format=None) -> (Tensor(a)) aten::to.other(Tensor(a) self, Tensor other, bool non_blocking=False, bool copy=False, int? memory_format=None) -> (Tensor(a)) aten::to.dtype_layout(Tensor(a) self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, bool copy=False, int? memory_format=None) -> (Tensor(a)) aten::to.prim_Device(Tensor(a) self, Device? device, int? dtype=None, bool non_blocking=False, bool copy=False) -> (Tensor(b|a)) aten::to.prim_dtype(Tensor(a) self, int? dtype=None, bool non_blocking=False, bool copy=False) -> (Tensor(b|a)) aten::to.prim_other(Tensor(a) self, bool non_blocking=False, bool copy=False) -> (Tensor(b|a))''' pass class ATenToCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_to_copy(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, int? memory_format=None) -> (Tensor)''' pass class ATenToCpuSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_to_cpu(Tensor[] tensors) -> (Tensor[])''' pass class ATenToDenseSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_to_dense(Tensor self, int? dtype=None) -> (Tensor) aten::to_dense(Tensor self, int? dtype=None) -> (Tensor)''' pass class ATenToPaddedTensorSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::to_padded_tensor(Tensor self, float padding, int[]? output_size=None) -> (Tensor)''' pass class ATenTopkSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::topk(Tensor self, int k, int dim=-1, bool largest=True, bool sorted=True) -> (Tensor values, Tensor indices) aten::topk.values(Tensor self, int k, int dim=-1, bool largest=True, bool sorted=True, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)''' pass class ATenTraceSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::trace(Tensor self) -> (Tensor)''' pass class ATenTransformBiasRescaleQkvSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_transform_bias_rescale_qkv(Tensor qkv, Tensor qkv_bias, int num_heads) -> (Tensor, Tensor, Tensor)''' pass class ATenTransformerEncoderLayerFwdSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_transformer_encoder_layer_fwd(Tensor src, int embed_dim, int num_heads, Tensor qkv_weight, Tensor qkv_bias, Tensor proj_weight, Tensor proj_bias, bool use_gelu, bool norm_first, float eps, Tensor norm_weight_1, Tensor norm_bias_1, Tensor norm_weight_2, Tensor norm_bias_2, Tensor ffn_weight_1, Tensor ffn_bias_1, Tensor ffn_weight_2, Tensor ffn_bias_2, Tensor? mask=None) -> (Tensor)''' pass class ATenTransposeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::transpose.int(Tensor(a) self, int dim0, int dim1) -> (Tensor(a)) aten::transpose.Dimname(Tensor(a) self, str dim0, str dim1) -> (Tensor(a))''' pass class ATenTransposeCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::transpose_copy.int(Tensor self, int dim0, int dim1) -> (Tensor)''' pass class ATenTrapezoidSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::trapezoid.x(Tensor y, Tensor x, *, int dim=-1) -> (Tensor) aten::trapezoid.dx(Tensor y, *, Scalar dx=1, int dim=-1) -> (Tensor)''' pass class ATenTrapzSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::trapz.x(Tensor y, Tensor x, *, int dim=-1) -> (Tensor) aten::trapz.dx(Tensor y, *, float dx=1., int dim=-1) -> (Tensor)''' pass class ATenTriangularSolveSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::triangular_solve(Tensor self, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False) -> (Tensor solution, Tensor cloned_coefficient) aten::triangular_solve.X(Tensor self, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False, *, Tensor(a!) X, Tensor(b!) M) -> (Tensor(a!) solution, Tensor(b!) cloned_coefficient)''' pass class ATenTrilSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::tril(Tensor self, int diagonal=0) -> (Tensor)''' pass class ATenTrilinearSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_trilinear(Tensor i1, Tensor i2, Tensor i3, int[] expand1, int[] expand2, int[] expand3, int[] sumdim, int unroll_dim=1) -> (Tensor)''' pass class ATenTripletMarginLossSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::triplet_margin_loss(Tensor anchor, Tensor positive, Tensor negative, float margin=1., float p=2., float eps=9.9999999999999995e-07, bool swap=False, int reduction=1) -> (Tensor)''' pass class ATenTriuSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::triu(Tensor self, int diagonal=0) -> (Tensor)''' pass class ATenTrueDivideSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::true_divide.Scalar(Tensor self, Scalar other) -> (Tensor) aten::true_divide.Tensor(Tensor self, Tensor other) -> (Tensor)''' pass class ATenTruncSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::trunc(Tensor self) -> (Tensor)''' pass class ATenTypeAsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::type_as(Tensor self, Tensor other) -> (Tensor)''' pass class ATenUnbindSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::unbind.int(Tensor(a -> *) self, int dim=0) -> (Tensor[]) aten::unbind.Dimname(Tensor(a -> *) self, str dim) -> (Tensor[])''' pass class ATenUnbindCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::unbind_copy.int(Tensor self, int dim=0) -> (Tensor[])''' pass class ATenUnflattenSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::unflatten.int(Tensor(a) self, int dim, int[] sizes, str[]? names=None) -> (Tensor(a)) aten::unflatten.Dimname(Tensor(a) self, str dim, int[] sizes, str[] names) -> (Tensor(a))''' pass class ATenUnflattenDenseTensorsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::unflatten_dense_tensors(Tensor flat, Tensor[] tensors) -> (Tensor[])''' pass class ATenUnfoldSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::unfold(Tensor(a) self, int dimension, int size, int step) -> (Tensor(a))''' pass class ATenUnfoldCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::unfold_copy(Tensor self, int dimension, int size, int step) -> (Tensor)''' pass class ATenUniformSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::uniform.functional(Tensor self, float from=0., float to=1., *, Generator? generator=None) -> (Tensor)''' pass class ATenUniqueSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_unique(Tensor self, bool sorted=True, bool return_inverse=False) -> (Tensor, Tensor)''' pass class ATenUnique2Schema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_unique2(Tensor self, bool sorted=True, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor)''' pass class ATenUniqueConsecutiveSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::unique_consecutive(Tensor self, bool return_inverse=False, bool return_counts=False, int? dim=None) -> (Tensor, Tensor, Tensor)''' pass class ATenUniqueDimSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::unique_dim(Tensor self, int dim, bool sorted=True, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor)''' pass class ATenUniqueDimConsecutiveSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::unique_dim_consecutive(Tensor self, int dim, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor)''' pass class ATenUnpackDualSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_unpack_dual(Tensor(a) dual, int level) -> (Tensor(a) primal, Tensor tangent)''' pass class ATenUnsafeChunkSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::unsafe_chunk(Tensor self, int chunks, int dim=0) -> (Tensor[])''' pass class ATenUnsafeSplitSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::unsafe_split.Tensor(Tensor self, int split_size, int dim=0) -> (Tensor[])''' pass class ATenUnsafeSplitWithSizesSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::unsafe_split_with_sizes(Tensor self, int[] split_sizes, int dim=0) -> (Tensor[])''' pass class ATenUnsafeViewSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_unsafe_view(Tensor self, int[] size) -> (Tensor)''' pass class ATenUnsqueezeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::unsqueeze(Tensor(a) self, int dim) -> (Tensor(a))''' pass class ATenUnsqueezeCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::unsqueeze_copy(Tensor self, int dim) -> (Tensor)''' pass class ATenUpsampleSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::__upsample(Tensor input, int? size=None, int? scale_factor=None, str mode="nearest", bool? align_corners=None) -> (Tensor) aten::__upsample.size_list(Tensor input, int[]? size=None, int? scale_factor=None, str mode="nearest", bool? align_corners=None) -> (Tensor)''' pass class ATenUpsampleBicubic2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::upsample_bicubic2d(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> (Tensor) aten::upsample_bicubic2d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor)''' pass class ATenUpsampleBicubic2dAaSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_upsample_bicubic2d_aa(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> (Tensor) aten::_upsample_bicubic2d_aa.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor)''' pass class ATenUpsampleBilinearSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::__upsample_bilinear(Tensor input, int? size=None, int? scale_factor=None) -> (Tensor) aten::__upsample_bilinear.size_list(Tensor input, int[]? size=None, int? scale_factor=None) -> (Tensor) aten::__upsample_bilinear.scale_list(Tensor input, int? size=None, int[]? scale_factor=None) -> (Tensor) aten::__upsample_bilinear.size_list_scale_list(Tensor input, int[]? size=None, int[]? scale_factor=None) -> (Tensor)''' pass class ATenUpsampleBilinear2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::upsample_bilinear2d(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> (Tensor) aten::upsample_bilinear2d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor)''' pass class ATenUpsampleBilinear2dAaSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_upsample_bilinear2d_aa(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> (Tensor) aten::_upsample_bilinear2d_aa.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor)''' pass class ATenUpsampleLinear1dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::upsample_linear1d(Tensor self, int[1] output_size, bool align_corners, float? scales=None) -> (Tensor) aten::upsample_linear1d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor)''' pass class ATenUpsampleNearestSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::__upsample_nearest(Tensor input, int? size=None, int? scale_factor=None) -> (Tensor) aten::__upsample_nearest.size_list(Tensor input, int[]? size=None, int? scale_factor=None) -> (Tensor)''' pass class ATenUpsampleNearest1dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::upsample_nearest1d(Tensor self, int[1] output_size, float? scales=None) -> (Tensor) aten::upsample_nearest1d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor)''' pass class ATenUpsampleNearest2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::upsample_nearest2d(Tensor self, int[2] output_size, float? scales_h=None, float? scales_w=None) -> (Tensor) aten::upsample_nearest2d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor)''' pass class ATenUpsampleNearest3dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::upsample_nearest3d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor) aten::upsample_nearest3d(Tensor self, int[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> (Tensor)''' pass class ATenUpsampleNearestExact1dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_upsample_nearest_exact1d(Tensor self, int[1] output_size, float? scales=None) -> (Tensor) aten::_upsample_nearest_exact1d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor)''' pass class ATenUpsampleNearestExact2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_upsample_nearest_exact2d(Tensor self, int[2] output_size, float? scales_h=None, float? scales_w=None) -> (Tensor) aten::_upsample_nearest_exact2d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor)''' pass class ATenUpsampleNearestExact3dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_upsample_nearest_exact3d.vec(Tensor input, int[]? output_size, float[]? scale_factors) -> (Tensor) aten::_upsample_nearest_exact3d(Tensor self, int[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> (Tensor)''' pass class ATenUpsampleTrilinear3dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::upsample_trilinear3d(Tensor self, int[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> (Tensor) aten::upsample_trilinear3d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> (Tensor)''' pass class ATenValuesSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_values(Tensor(a) self) -> (Tensor(a)) aten::values(Tensor(a) self) -> (Tensor(a))''' pass class ATenValuesCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::values_copy(Tensor self) -> (Tensor) aten::_values_copy(Tensor self) -> (Tensor)''' pass class ATenVanderSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::vander(Tensor x, int? N=None, bool increasing=False) -> (Tensor)''' pass class ATenVarSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::var(Tensor self, bool unbiased=True) -> (Tensor) aten::var.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor) aten::var.names_dim(Tensor self, str[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor) aten::var.correction(Tensor self, int[1]? dim, *, int? correction, bool keepdim=False) -> (Tensor) aten::var.correction_names(Tensor self, str[1] dim, *, int? correction, bool keepdim=False) -> (Tensor)''' pass class ATenVarMeanSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::var_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor) aten::var_mean.dim(Tensor self, int[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor) aten::var_mean.names_dim(Tensor self, str[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor) aten::var_mean.correction(Tensor self, int[1]? dim, *, int? correction, bool keepdim=False) -> (Tensor, Tensor) aten::var_mean.correction_names(Tensor self, str[1] dim, *, int? correction, bool keepdim=False) -> (Tensor, Tensor)''' pass class ATenVdotSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::vdot(Tensor self, Tensor other) -> (Tensor)''' pass class ATenViewSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::view(Tensor(a) self, int[] size) -> (Tensor(a)) aten::view.dtype(Tensor(a) self, int dtype) -> (Tensor(a))''' pass class ATenViewAsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::view_as(Tensor(a) self, Tensor other) -> (Tensor(a))''' pass class ATenViewAsComplexSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::view_as_complex(Tensor(a) self) -> (Tensor(a))''' pass class ATenViewAsComplexCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::view_as_complex_copy(Tensor self) -> (Tensor)''' pass class ATenViewAsRealSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::view_as_real(Tensor(a) self) -> (Tensor(a))''' pass class ATenViewAsRealCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::view_as_real_copy(Tensor self) -> (Tensor)''' pass class ATenViewCopySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::view_copy(Tensor self, int[] size) -> (Tensor) aten::view_copy.dtype(Tensor self, int dtype) -> (Tensor)''' pass class ATenVsplitSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::vsplit.int(Tensor(a -> *) self, int sections) -> (Tensor[]) aten::vsplit.array(Tensor(a -> *) self, int[] indices) -> (Tensor[])''' pass class ATenVstackSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::vstack(Tensor[] tensors) -> (Tensor)''' pass class ATenWeightNormSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_weight_norm(Tensor v, Tensor g, int dim=0) -> (Tensor)''' pass class ATenWeightNormInterfaceSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::_weight_norm_interface(Tensor v, Tensor g, int dim=0) -> (Tensor, Tensor)''' pass class ATenWhereSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::where.self(Tensor condition, Tensor self, Tensor other) -> (Tensor) aten::where.ScalarSelf(Tensor condition, Scalar self, Tensor other) -> (Tensor) aten::where.ScalarOther(Tensor condition, Tensor self, Scalar other) -> (Tensor) aten::where.Scalar(Tensor condition, Scalar self, Scalar other) -> (Tensor) aten::where(Tensor condition) -> (Tensor[])''' pass class ATenXlogySchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::xlogy.Tensor(Tensor self, Tensor other) -> (Tensor) aten::xlogy.Scalar_Self(Scalar self, Tensor other) -> (Tensor) aten::xlogy.Scalar_Other(Tensor self, Scalar other) -> (Tensor)''' pass class ATenXorSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::__xor__.Scalar(Tensor self, Scalar other) -> (Tensor) aten::__xor__.Tensor(Tensor self, Tensor other) -> (Tensor)''' pass class ATenZeroSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::zero.functional(Tensor self) -> (Tensor)''' pass class ATenZerosLikeSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''aten::zeros_like(Tensor self, *, int? dtype=None, int? layout=None, Device? device=None, bool? pin_memory=None, int? memory_format=None) -> (Tensor)''' pass