tinynn/converter/schemas/torch/torchvision_schema.py (42 lines of code) (raw):

from abc import abstractmethod from ...operators.torch.base import OperatorConverter class TorchVisionPsRoiAlignSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''torchvision::ps_roi_align(Tensor input, Tensor rois, float spatial_scale, int pooled_height, int pooled_width, int sampling_ratio) -> (Tensor, Tensor)''' pass class TorchVisionRoiAlignSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''torchvision::roi_align(Tensor input, Tensor rois, float spatial_scale, int pooled_height, int pooled_width, int sampling_ratio, bool aligned) -> (Tensor)''' pass class TorchVisionPsRoiPoolSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''torchvision::ps_roi_pool(Tensor input, Tensor rois, float spatial_scale, int pooled_height, int pooled_width) -> (Tensor, Tensor)''' pass class TorchVisionDeformConv2dSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''torchvision::deform_conv2d(Tensor input, Tensor weight, Tensor offset, Tensor mask, Tensor bias, int stride_h, int stride_w, int pad_h, int pad_w, int dilation_h, int dilation_w, int groups, int offset_groups, bool use_mask) -> (Tensor)''' pass class TorchVisionInterpolateBilinear2dAaSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''torchvision::_interpolate_bilinear2d_aa(Tensor input, int[] output_size, bool align_corners) -> (Tensor)''' pass class TorchVisionInterpolateBicubic2dAaSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''torchvision::_interpolate_bicubic2d_aa(Tensor input, int[] output_size, bool align_corners) -> (Tensor)''' pass class TorchVisionNmsSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''torchvision::nms(Tensor dets, Tensor scores, float iou_threshold) -> (Tensor)''' pass class TorchVisionRoiPoolSchema(OperatorConverter): @abstractmethod def parse(self, node, attrs, args, graph_converter): '''torchvision::roi_pool(Tensor input, Tensor rois, float spatial_scale, int pooled_height, int pooled_width) -> (Tensor, Tensor)''' pass