tinynn/llm_quant/llama.py (98 lines of code) (raw):
import math
from typing import Optional, Tuple
from distutils.version import LooseVersion
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
from transformers.modeling_utils import set_module_tensor_to_device
class LlamaAttentionFused(nn.Module):
def __init__(self, origin_attention):
super().__init__()
self.config = origin_attention.config
self.hidden_size = origin_attention.hidden_size
self.num_heads = origin_attention.num_heads
self.head_dim = origin_attention.head_dim
self.max_position_embeddings = origin_attention.max_position_embeddings
self.qkv_proj = nn.Linear(
origin_attention.hidden_size, origin_attention.num_heads * origin_attention.head_dim * 3, bias=False
)
fused_weight = torch.cat(
[
fc_node.weight.data
for fc_node in [origin_attention.q_proj, origin_attention.k_proj, origin_attention.v_proj]
],
dim=0,
)
set_module_tensor_to_device(
self.qkv_proj, 'weight', fused_weight.device, value=fused_weight, dtype=fused_weight.dtype
)
self.o_proj = origin_attention.o_proj
self.rotary_emb = origin_attention.rotary_emb
origin_attention.q_proj = None
origin_attention.k_proj = None
origin_attention.v_proj = None
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
# use fused fc output to get qkv states
qkv_states = self.qkv_proj(hidden_states).view(bsz, q_len, self.num_heads * 3, self.head_dim).transpose(1, 2)
(query_states, key_states, value_states) = torch.chunk(qkv_states, 3, 1)
is_causal = past_key_value is None
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
# [bsz, nh, t, hd]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
if LooseVersion(torch.__version__) == LooseVersion('1.13.0'):
with torch.backends.cuda.sdp_kernel(enable_math=False):
attn_output, attn_weights = F._scaled_dot_product_attention(
query_states, key_states, value_states, is_causal=is_causal
)
elif LooseVersion(torch.__version__) >= LooseVersion('2.0.0'):
with torch.backends.cuda.sdp_kernel(enable_math=False):
attn_output = F.scaled_dot_product_attention(
query_states, key_states, value_states, is_causal=is_causal
)
attn_weights = None
else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is"
f" {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
del query_states, key_states, value_states
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value