tinynn/llm_quant/llama.py (98 lines of code) (raw):

import math from typing import Optional, Tuple from distutils.version import LooseVersion import torch import torch.nn as nn import torch.nn.functional as F from transformers.models.llama.modeling_llama import apply_rotary_pos_emb from transformers.modeling_utils import set_module_tensor_to_device class LlamaAttentionFused(nn.Module): def __init__(self, origin_attention): super().__init__() self.config = origin_attention.config self.hidden_size = origin_attention.hidden_size self.num_heads = origin_attention.num_heads self.head_dim = origin_attention.head_dim self.max_position_embeddings = origin_attention.max_position_embeddings self.qkv_proj = nn.Linear( origin_attention.hidden_size, origin_attention.num_heads * origin_attention.head_dim * 3, bias=False ) fused_weight = torch.cat( [ fc_node.weight.data for fc_node in [origin_attention.q_proj, origin_attention.k_proj, origin_attention.v_proj] ], dim=0, ) set_module_tensor_to_device( self.qkv_proj, 'weight', fused_weight.device, value=fused_weight, dtype=fused_weight.dtype ) self.o_proj = origin_attention.o_proj self.rotary_emb = origin_attention.rotary_emb origin_attention.q_proj = None origin_attention.k_proj = None origin_attention.v_proj = None def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() # use fused fc output to get qkv states qkv_states = self.qkv_proj(hidden_states).view(bsz, q_len, self.num_heads * 3, self.head_dim).transpose(1, 2) (query_states, key_states, value_states) = torch.chunk(qkv_states, 3, 1) is_causal = past_key_value is None kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) # [bsz, nh, t, hd] if past_key_value is not None: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None if LooseVersion(torch.__version__) == LooseVersion('1.13.0'): with torch.backends.cuda.sdp_kernel(enable_math=False): attn_output, attn_weights = F._scaled_dot_product_attention( query_states, key_states, value_states, is_causal=is_causal ) elif LooseVersion(torch.__version__) >= LooseVersion('2.0.0'): with torch.backends.cuda.sdp_kernel(enable_math=False): attn_output = F.scaled_dot_product_attention( query_states, key_states, value_states, is_causal=is_causal ) attn_weights = None else: attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is" f" {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) del query_states, key_states, value_states attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value