in modules/SwissArmyTransformer/sat/ops/ops_builder/builder.py [0:0]
def jit_load(self, verbose=True):
if not self.is_compatible(verbose):
raise RuntimeError(
f"Unable to JIT load the {self.name} op due to it not being compatible due to hardware/software issue. {self.error_log}"
)
try:
import ninja # noqa: F401
except ImportError:
raise RuntimeError(f"Unable to JIT load the {self.name} op due to ninja not being installed.")
if isinstance(self, CUDAOpBuilder) and not self.is_rocm_pytorch():
try:
assert_no_cuda_mismatch(self.name)
self.build_for_cpu = False
except BaseException:
self.build_for_cpu = True
self.jit_mode = True
from torch.utils.cpp_extension import load
start_build = time.time()
sources = [self.sat_src_path(path) for path in self.sources()]
extra_include_paths = [self.sat_src_path(path) for path in self.include_paths()]
# Torch will try and apply whatever CCs are in the arch list at compile time,
# we have already set the intended targets ourselves we know that will be
# needed at runtime. This prevents CC collisions such as multiple __half
# implementations. Stash arch list to reset after build.
torch_arch_list = None
if "TORCH_CUDA_ARCH_LIST" in os.environ:
torch_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST")
os.environ["TORCH_CUDA_ARCH_LIST"] = ""
op_module = load(name=self.name,
sources=self.strip_empty_entries(sources),
extra_include_paths=self.strip_empty_entries(extra_include_paths),
extra_cflags=self.strip_empty_entries(self.cxx_args()),
extra_cuda_cflags=self.strip_empty_entries(self.nvcc_args()),
extra_ldflags=self.strip_empty_entries(self.extra_ldflags()),
verbose=verbose)
build_duration = time.time() - start_build
if verbose:
print(f"Time to load {self.name} op: {build_duration} seconds")
# Reset arch list so we are not silently removing it for other possible use cases
if torch_arch_list:
os.environ["TORCH_CUDA_ARCH_LIST"] = torch_arch_list
return op_module