def step()

in modules/SwissArmyTransformer/sat/ops/fused_ema_adam.py [0:0]


    def step(self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None, grad_scaler=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.

        The remaining arguments are deprecated, and are only retained (for the moment) for error-checking purposes.
        """
        if any(p is not None for p in [grads, output_params, scale, grad_norms]):
            raise RuntimeError(
                'FusedAdam has been updated.  Simply initialize it identically to torch.optim.Adam, and call step() with no arguments.'
            )
        loss = None
        if closure is not None:
            loss = closure()

        ema_decay = self.ema_decay
        if self.num_updates >= 0:
            self.num_updates += 1
            ema_decay = min(self.ema_decay,(1 + self.num_updates) / (10 + self.num_updates))


        for group in self.param_groups:
            if len(group['params']) == 0:
                continue
            bias_correction = 1 if group['bias_correction'] else 0
            beta1, beta2 = group['betas']

            # assume same step across group now to simplify things
            # per parameter step can be easily support by making it tensor, or pass list into kernel
            if 'step' not in group:
                group['step'] = 0

            # create lists for multi-tensor apply
            g_16, p_16, m_16, v_16, s_16 = [], [], [], [], []
            g_bf, p_bf, m_bf, v_bf, s_bf = [], [], [], [], []
            g_32, p_32, m_32, v_32, s_32 = [], [], [], [], []

            for p in group['params']:
                if p.grad is None:
                    continue
                if p.grad.data.is_sparse:
                    raise RuntimeError(
                        'FusedEmaAdam does not support sparse gradients, please consider SparseAdam instead')

                state = self.state[p]
                # State initialization
                if len(state) == 0:
                    # DeepSpeed ZeRO 3 processes each subgroup a time, so we need to keep tracking step count for each tensor separately.
                    # While this is not an issue for ZeRO 1 & 2, since they apply a single optimization step to the whole param group at the same time.
                    # In order to keep backward compatibility for the existing checkpoints, we use group['state'] to initialize state['step'] if it exists.
                    state['step'] = group.get('step', 0)
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p.data)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p.data)
                    # Exponential moving average of shadow weights
                    state['shadow'] = p.data.clone()

                if p.dtype == torch.float16:
                    g_16.append(p.grad.data)
                    p_16.append(p.data)
                    m_16.append(state['exp_avg'])
                    v_16.append(state['exp_avg_sq'])
                    s_16.append(state['shadow'])
                elif p.dtype == torch.bfloat16:
                    g_bf.append(p.grad)
                    p_bf.append(p)
                    m_bf.append(state['exp_avg'])
                    v_bf.append(state['exp_avg_sq'])
                    s_bf.append(state['shadow'])
                elif p.dtype == torch.float32:
                    g_32.append(p.grad.data)
                    p_32.append(p.data)
                    m_32.append(state['exp_avg'])
                    v_32.append(state['exp_avg_sq'])
                    s_32.append(state['shadow'])
                else:
                    raise RuntimeError('FusedEmaAdam only support fp16, bf16 and fp32.')

            if len(g_16) > 0:
                state['step'] += 1
                multi_tensor_applier(self.multi_tensor_ema_adam, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16, s_16],
                                     group['lr'], ema_decay, beta1, beta2, group['eps'], state['step'], self.adam_w_mode,
                                     bias_correction, group['weight_decay'])

            if len(g_bf) > 0:
                state['step'] += 1
                multi_tensor_applier(self.multi_tensor_ema_adam, self._dummy_overflow_buf, [g_bf, p_bf, m_bf, v_bf, s_bf],
                                     group['lr'], ema_decay, beta1, beta2, group['eps'], state['step'], self.adam_w_mode,
                                     bias_correction, group['weight_decay'])

            if len(g_32) > 0:
                state['step'] += 1
                multi_tensor_applier(self.multi_tensor_ema_adam, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32, s_32],
                                     group['lr'], ema_decay, beta1, beta2, group['eps'], state['step'], self.adam_w_mode,
                                     bias_correction, group['weight_decay'])

        return loss