modules/SwissArmyTransformer/sat/model/official/chatglm3_model.py (119 lines of code) (raw):

import torch import torch.nn as nn import torch.nn.functional as F from sat.model.base_model import BaseMixin, BaseModel from sat.mpu.utils import split_tensor_along_last_dim from sat.ops.layernorm import RMSNorm from sat.transformer_defaults import attention_fn_default from sat.model.position_embedding.triton_rotary_embeddings import FastRotaryEmbedding from sat.mpu.layers import ColumnParallelLinear class ChatGLM3AttnMixin(BaseMixin): def __init__(self, hidden_size, num_heads, max_seq_len, base_scale): super().__init__() rotary_dim = hidden_size // num_heads self.rotary_pos_emb = FastRotaryEmbedding(rotary_dim // 2, interleaved=True, base=10000*base_scale) self.max_seq_len = max_seq_len def attention_forward(self, hidden_states, mask, **kw_args): origin = self self = self.transformer.layers[kw_args['layer_id']].attention attention_fn = attention_fn_default if 'attention_fn' in self.hooks: attention_fn = self.hooks['attention_fn'] mixed_raw_layer = self.query_key_value(hidden_states) (mixed_query_layer, mixed_key_layer, mixed_value_layer) = split_tensor_along_last_dim(mixed_raw_layer, self.stride) dropout_fn = self.attention_dropout if self.training else None query_layer = self._transpose_for_scores(mixed_query_layer) key_layer = self._transpose_for_scores(mixed_key_layer) value_layer = self._transpose_for_scores(mixed_value_layer) max_seq_len = kw_args['position_ids'].max() + 1 query_layer, key_layer = origin.rotary_pos_emb(query_layer, key_layer, kw_args['position_ids'], max_seqlen=max_seq_len) if kw_args.get('past_key_values', None) is not None: pack = kw_args['past_key_values'][kw_args['layer_id']] if pack is not None: past_key, past_value = pack key_layer = torch.cat((past_key, key_layer), dim=2) value_layer = torch.cat((past_value, value_layer), dim=2) kw_args['output_this_layer']['past_key_values'] = (key_layer, value_layer) context_layer = attention_fn(query_layer, key_layer, value_layer, mask, dropout_fn, **kw_args) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,) context_layer = context_layer.view(*new_context_layer_shape) output = self.dense(context_layer) if self.training: output = self.output_dropout(output) return output class SwiGLUMixin(BaseMixin): def __init__(self, num_layers, in_features, hidden_features, bias=False): super().__init__() self.w2 = nn.ModuleList([ColumnParallelLinear( in_features, hidden_features, gather_output=False, # init_method=init_method, bias=bias, # params_dtype=params_dtype, module=self, name="dense_h_to_4h_gate", # skip_init=skip_init, # device=device ) for i in range(num_layers)]) def mlp_forward(self, hidden_states, **kw_args): x = hidden_states origin = self.transformer.layers[kw_args['layer_id']].mlp x1 = origin.dense_h_to_4h(x) x2 = self.w2[kw_args['layer_id']](x) hidden = origin.activation_func(x2) * x1 x = origin.dense_4h_to_h(hidden) return x from .chatglm_model import ChatGLMFinalMixin class ChatGLM3Model(BaseModel): def __init__(self, args, transformer=None, **kwargs): super(ChatGLM3Model, self).__init__(args, transformer=transformer, activation_func=F.silu, layernorm=RMSNorm, **kwargs) del self.transformer.position_embeddings self.add_mixin("chatglm-final", ChatGLMFinalMixin(args.vocab_size, args.hidden_size)) self.add_mixin("attn", ChatGLM3AttnMixin(args.hidden_size, args.num_attention_heads, args.max_sequence_length, args.base_scale)) self.add_mixin("mlp", SwiGLUMixin(args.num_layers, args.hidden_size, args.inner_hidden_size, bias=args.use_bias)) def position_embedding_forward(self, position_ids, output_cross_layer, **kw_args): return None def get_masks(self, input_ids, past_key_values, padding_mask=None): batch_size, seq_length = input_ids.shape full_attention_mask = torch.ones(batch_size, seq_length, seq_length, dtype=next(self.parameters()).dtype, device=input_ids.device) full_attention_mask.tril_() past_length = 0 if past_key_values: past_length = past_key_values[0][0].shape[2] if past_length: full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length, dtype=next(self.parameters()).dtype, device=input_ids.device), full_attention_mask), dim=-1) if padding_mask is not None: full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1) if not past_length and padding_mask is not None: full_attention_mask -= padding_mask.unsqueeze(-1) - 1 full_attention_mask = (full_attention_mask < 0.5).bool() full_attention_mask.unsqueeze_(1) return full_attention_mask def get_position_ids(self, input_ids): batch_size, seq_length = input_ids.shape position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device).unsqueeze(0).repeat(batch_size, 1) return position_ids def forward(self, input_ids, position_ids=None, attention_mask=None, past_key_values=None, **kwargs): if position_ids is None: position_ids = self.get_position_ids(input_ids) if attention_mask is not None and attention_mask.ndim == 4: pass elif past_key_values is not None and input_ids.size(0) == 1: attention_mask = torch.tensor([[1]], dtype=torch.long, device=input_ids.device) else: attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask) if attention_mask is not None and attention_mask.dtype is torch.bool: attention_mask = ~attention_mask attention_mask = attention_mask.to(next(self.parameters()).dtype) if past_key_values is not None: input_ids = input_ids[:, -1:] position_ids = position_ids[..., -1:] if input_ids.size(0) != 1: attention_mask = attention_mask[:, :, -1:] return super().forward(input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, **kwargs) @classmethod def add_model_specific_args(cls, parser): group = parser.add_argument_group('ChatGLM3', 'ChatGLM3 Configurations') group.add_argument('--base-scale', type=float, default=1.) return super().add_model_specific_args(parser)