modules/SwissArmyTransformer/sat/model/official/mae_model.py (117 lines of code) (raw):
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from sat.model.base_model import BaseMixin, BaseModel, non_conflict
from sat.model.official.vit_model import ViTModel
from sat.model.mixins import BaseMixin
from sat import mpu
from sat.model.position_embedding import get_2d_sincos_pos_embed
"""
MAE model follows encoder-decoder architecture.
For encoder, it is a normal ViTModel with customed position embeddings.
For decoder, it is a normal BaseModel adding [MASK] token.
"""
from sat.model.official.vit_model import InterpolatedPositionEmbeddingMixin
class PosMixin(InterpolatedPositionEmbeddingMixin):
def __init__(self, hidden_size, old_property, property, init_method_std=0.02):
super().__init__(hidden_size, old_property, property, init_method_std=init_method_std)
self.hidden_size = hidden_size
def reinit(self, parent_model=None):
old_weight = self.transformer.position_embeddings.weight.data
self.transformer.position_embeddings = torch.nn.Embedding(self.property.seq_len, old_weight.shape[1]).type(old_weight.dtype).to(old_weight.device).requires_grad_(False)
self.transformer.position_embeddings.weight.data = torch.Tensor(get_2d_sincos_pos_embed(self.hidden_size, self.property.grid_size, self.property.pre_len, self.property.post_len))
def after_position_forward(self, hidden_states, **kw_args):
"""
Perform random_masking after adding position_embedding.
"""
x = hidden_states[:, 1:]
# masking: length -> length * mask_ratio
x, mask, ids_restore = self.random_masking(x, kw_args['mask_ratio'])
# append cls token
cls_tokens = hidden_states[:, :1]
x = torch.cat((cls_tokens, x), dim=1)
return x, {'mask': mask, 'ids_restore': ids_restore}
def layer_forward(self, hidden_states, mask, *args, **kw_args):
'''
hidden_states: [batch, seq_len, hidden_size]
mask: [(1, 1), seq_len, seq_len]
'''
layer = self.transformer.layers[kw_args['layer_id']]
if kw_args['layer_id'] == 0:
hidden_states, dic_buffer = self.after_position_forward(hidden_states, **kw_args)
for k in dic_buffer:
kw_args['output_this_layer'][k] = dic_buffer[k]
output = layer(hidden_states, mask, *args, **kw_args)
return output
def random_masking(self, x, mask_ratio):
"""
Perform per-sample random masking by per-sample shuffling.
Per-sample shuffling is done by argsort random noise.
x: [N, L, D], sequence
"""
N, L, D = x.shape # batch, length, dim
len_keep = int(L * (1 - mask_ratio))
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
# sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
# generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([N, L], device=x.device)
mask[:, :len_keep] = 0
# unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return x_masked, mask, ids_restore
class MAEEncoder(ViTModel):
def __init__(self, args, transformer=None, layernorm_epsilon=1e-6):
super().__init__(args, transformer=transformer, layernorm_epsilon=layernorm_epsilon)
self.del_mixin('cls')
self.del_mixin('pos_embedding')
self.add_mixin('pos_embedding', PosMixin(args.hidden_size, self.old_property, self.property))
@classmethod
def add_model_specific_args(cls, parser):
group = parser.add_argument_group('MAE-enc', 'MAE encoder Configurations')
return super().add_model_specific_args(parser)
class MaskMixin(BaseMixin):
def __init__(self, args):
super().__init__()
self.decoder_embed = nn.Linear(args.enc_hidden_size, args.hidden_size, bias=True)
self.decoder_pred = nn.Linear(args.hidden_size, args.patch_size**2 * args.in_channels, bias=True) # decoder to patch
def word_embedding_forward(self, input_ids, **kwargs):
x = kwargs["encoder_outputs"]
ids_restore = kwargs["ids_restore"]
x = self.decoder_embed(x)
mask_tokens = self.transformer.word_embeddings(input_ids).repeat(1, ids_restore.shape[1] + 1 - x.shape[1], 1)
x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) # no cls token
# breakpoint()
x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])) # unshuffle
x = torch.cat([x[:, :1, :], x_], dim=1) # append cls token
return x
def position_embedding_forward(self, position_ids, output_cross_layer, **kw_args):
return self.transformer.position_embeddings(position_ids)
def final_forward(self, logits, **kw_args):
logits = self.decoder_pred(logits)
return logits[:, 1:]
class MAEDecoder(BaseModel):
def __init__(self, args, transformer=None, layernorm_epsilon=1e-6):
super().__init__(args, transformer=transformer, layernorm_epsilon=layernorm_epsilon)
self.add_mixin('mask_forward', MaskMixin(args))
@classmethod
def add_model_specific_args(cls, parser):
return super().add_model_specific_args(parser)
from sat.model import EncoderDecoderModel
import argparse
class MAE(EncoderDecoderModel):
def __init__(self, args, transformer=None, layernorm_epsilon=1e-6):
encoder = MAEEncoder(args, transformer=transformer, layernorm_epsilon=layernorm_epsilon)
dec_args = argparse.Namespace(**vars(args))
# dec_args.enc_hidden_size = dec_args.hidden_size # used for cross attn
override_attrs = ['num_layers', 'hidden_size', 'num_attention_heads',
'max_sequence_length', 'inner_hidden_size', 'hidden_size_per_attention_head']
for name in override_attrs:
dec_attr = getattr(dec_args, 'dec_' + name, None)
if dec_attr is not None: # else use encoder-config
setattr(dec_args, name, dec_attr)
setattr(dec_args, 'enc_hidden_size', args.hidden_size)
decoder = MAEDecoder(dec_args, transformer=transformer, layernorm_epsilon=layernorm_epsilon)
super().__init__(args, encoder=encoder, decoder=decoder, tie_word_embeddings=False)
def encode(self, input_ids, position_ids, attention_mask=None, **kw_args):
return self.encoder(input_ids, position_ids, attention_mask, **kw_args)
def decode(self, input_ids, position_ids, attention_mask, encoder_outputs, ids_restore, **kw_args):
return self.decoder(input_ids, position_ids, attention_mask, encoder_outputs=encoder_outputs, ids_restore=ids_restore, **kw_args)
def forward(self, input_ids, enc_position_ids, dec_position_ids, *, enc_attention_mask=None, dec_attention_mask=None, **kw_args):
if enc_attention_mask is None:
enc_attention_mask = torch.ones(1, 1, dtype=self.encoder.transformer.word_embeddings.weight.dtype, device=input_ids.device)
encoder_outputs, *encoder_mems = self.encode(input_ids, enc_position_ids, enc_attention_mask, **kw_args)
decoder_outputs, *decoder_mems = self.decode(input_ids, dec_position_ids, dec_attention_mask, encoder_outputs=encoder_outputs, ids_restore=encoder_mems[0]["ids_restore"], **kw_args)
return encoder_outputs, decoder_outputs, encoder_mems, decoder_mems
def unpatchify(self, x):
"""
x: (N, L, patch_size**2 *3)
imgs: (N, 3, H, W)
"""
p = self.encoder.property.patch_size
h = w = int(x.shape[1]**.5)
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, 3))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], 3, h * p, h * p))
return imgs