modules/SwissArmyTransformer/sat/model/official/mae_model.py (117 lines of code) (raw):

import math import torch import torch.nn as nn import torch.nn.functional as F from sat.model.base_model import BaseMixin, BaseModel, non_conflict from sat.model.official.vit_model import ViTModel from sat.model.mixins import BaseMixin from sat import mpu from sat.model.position_embedding import get_2d_sincos_pos_embed """ MAE model follows encoder-decoder architecture. For encoder, it is a normal ViTModel with customed position embeddings. For decoder, it is a normal BaseModel adding [MASK] token. """ from sat.model.official.vit_model import InterpolatedPositionEmbeddingMixin class PosMixin(InterpolatedPositionEmbeddingMixin): def __init__(self, hidden_size, old_property, property, init_method_std=0.02): super().__init__(hidden_size, old_property, property, init_method_std=init_method_std) self.hidden_size = hidden_size def reinit(self, parent_model=None): old_weight = self.transformer.position_embeddings.weight.data self.transformer.position_embeddings = torch.nn.Embedding(self.property.seq_len, old_weight.shape[1]).type(old_weight.dtype).to(old_weight.device).requires_grad_(False) self.transformer.position_embeddings.weight.data = torch.Tensor(get_2d_sincos_pos_embed(self.hidden_size, self.property.grid_size, self.property.pre_len, self.property.post_len)) def after_position_forward(self, hidden_states, **kw_args): """ Perform random_masking after adding position_embedding. """ x = hidden_states[:, 1:] # masking: length -> length * mask_ratio x, mask, ids_restore = self.random_masking(x, kw_args['mask_ratio']) # append cls token cls_tokens = hidden_states[:, :1] x = torch.cat((cls_tokens, x), dim=1) return x, {'mask': mask, 'ids_restore': ids_restore} def layer_forward(self, hidden_states, mask, *args, **kw_args): ''' hidden_states: [batch, seq_len, hidden_size] mask: [(1, 1), seq_len, seq_len] ''' layer = self.transformer.layers[kw_args['layer_id']] if kw_args['layer_id'] == 0: hidden_states, dic_buffer = self.after_position_forward(hidden_states, **kw_args) for k in dic_buffer: kw_args['output_this_layer'][k] = dic_buffer[k] output = layer(hidden_states, mask, *args, **kw_args) return output def random_masking(self, x, mask_ratio): """ Perform per-sample random masking by per-sample shuffling. Per-sample shuffling is done by argsort random noise. x: [N, L, D], sequence """ N, L, D = x.shape # batch, length, dim len_keep = int(L * (1 - mask_ratio)) noise = torch.rand(N, L, device=x.device) # noise in [0, 1] # sort noise for each sample ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove ids_restore = torch.argsort(ids_shuffle, dim=1) # keep the first subset ids_keep = ids_shuffle[:, :len_keep] x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) # generate the binary mask: 0 is keep, 1 is remove mask = torch.ones([N, L], device=x.device) mask[:, :len_keep] = 0 # unshuffle to get the binary mask mask = torch.gather(mask, dim=1, index=ids_restore) return x_masked, mask, ids_restore class MAEEncoder(ViTModel): def __init__(self, args, transformer=None, layernorm_epsilon=1e-6): super().__init__(args, transformer=transformer, layernorm_epsilon=layernorm_epsilon) self.del_mixin('cls') self.del_mixin('pos_embedding') self.add_mixin('pos_embedding', PosMixin(args.hidden_size, self.old_property, self.property)) @classmethod def add_model_specific_args(cls, parser): group = parser.add_argument_group('MAE-enc', 'MAE encoder Configurations') return super().add_model_specific_args(parser) class MaskMixin(BaseMixin): def __init__(self, args): super().__init__() self.decoder_embed = nn.Linear(args.enc_hidden_size, args.hidden_size, bias=True) self.decoder_pred = nn.Linear(args.hidden_size, args.patch_size**2 * args.in_channels, bias=True) # decoder to patch def word_embedding_forward(self, input_ids, **kwargs): x = kwargs["encoder_outputs"] ids_restore = kwargs["ids_restore"] x = self.decoder_embed(x) mask_tokens = self.transformer.word_embeddings(input_ids).repeat(1, ids_restore.shape[1] + 1 - x.shape[1], 1) x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) # no cls token # breakpoint() x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])) # unshuffle x = torch.cat([x[:, :1, :], x_], dim=1) # append cls token return x def position_embedding_forward(self, position_ids, output_cross_layer, **kw_args): return self.transformer.position_embeddings(position_ids) def final_forward(self, logits, **kw_args): logits = self.decoder_pred(logits) return logits[:, 1:] class MAEDecoder(BaseModel): def __init__(self, args, transformer=None, layernorm_epsilon=1e-6): super().__init__(args, transformer=transformer, layernorm_epsilon=layernorm_epsilon) self.add_mixin('mask_forward', MaskMixin(args)) @classmethod def add_model_specific_args(cls, parser): return super().add_model_specific_args(parser) from sat.model import EncoderDecoderModel import argparse class MAE(EncoderDecoderModel): def __init__(self, args, transformer=None, layernorm_epsilon=1e-6): encoder = MAEEncoder(args, transformer=transformer, layernorm_epsilon=layernorm_epsilon) dec_args = argparse.Namespace(**vars(args)) # dec_args.enc_hidden_size = dec_args.hidden_size # used for cross attn override_attrs = ['num_layers', 'hidden_size', 'num_attention_heads', 'max_sequence_length', 'inner_hidden_size', 'hidden_size_per_attention_head'] for name in override_attrs: dec_attr = getattr(dec_args, 'dec_' + name, None) if dec_attr is not None: # else use encoder-config setattr(dec_args, name, dec_attr) setattr(dec_args, 'enc_hidden_size', args.hidden_size) decoder = MAEDecoder(dec_args, transformer=transformer, layernorm_epsilon=layernorm_epsilon) super().__init__(args, encoder=encoder, decoder=decoder, tie_word_embeddings=False) def encode(self, input_ids, position_ids, attention_mask=None, **kw_args): return self.encoder(input_ids, position_ids, attention_mask, **kw_args) def decode(self, input_ids, position_ids, attention_mask, encoder_outputs, ids_restore, **kw_args): return self.decoder(input_ids, position_ids, attention_mask, encoder_outputs=encoder_outputs, ids_restore=ids_restore, **kw_args) def forward(self, input_ids, enc_position_ids, dec_position_ids, *, enc_attention_mask=None, dec_attention_mask=None, **kw_args): if enc_attention_mask is None: enc_attention_mask = torch.ones(1, 1, dtype=self.encoder.transformer.word_embeddings.weight.dtype, device=input_ids.device) encoder_outputs, *encoder_mems = self.encode(input_ids, enc_position_ids, enc_attention_mask, **kw_args) decoder_outputs, *decoder_mems = self.decode(input_ids, dec_position_ids, dec_attention_mask, encoder_outputs=encoder_outputs, ids_restore=encoder_mems[0]["ids_restore"], **kw_args) return encoder_outputs, decoder_outputs, encoder_mems, decoder_mems def unpatchify(self, x): """ x: (N, L, patch_size**2 *3) imgs: (N, 3, H, W) """ p = self.encoder.property.patch_size h = w = int(x.shape[1]**.5) assert h * w == x.shape[1] x = x.reshape(shape=(x.shape[0], h, w, p, p, 3)) x = torch.einsum('nhwpqc->nchpwq', x) imgs = x.reshape(shape=(x.shape[0], 3, h * p, h * p)) return imgs