modules/SwissArmyTransformer/sat/tokenization/cogview/vqvae/vqvae_zc.py (235 lines of code) (raw):
import torch
from torch import nn
from torch.nn import functional as F
from .vqvae_diffusion import Decoder as DifDecoder
# import distributed as dist_fn
# Copyright 2018 The Sonnet Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
# Borrowed from https://github.com/deepmind/sonnet and ported it to PyTorch
class Quantize(nn.Module):
def __init__(self, dim, n_embed, decay=0.99, eps=1e-5):
super().__init__()
self.dim = dim
self.n_embed = n_embed
self.decay = decay
self.eps = eps
embed = torch.randn(dim, n_embed)
torch.nn.init.xavier_uniform_(embed, gain=torch.nn.init.calculate_gain('tanh'))
self.register_buffer("embed", embed)
self.register_buffer("cluster_size", torch.zeros(n_embed))
self.register_buffer("embed_avg", embed.clone())
def forward_(self, input, continuous_relax=False, temperature=1., hard=False):
flatten = input.reshape(-1, self.dim)
dist = (
flatten.pow(2).sum(1, keepdim=True)
- 2 * flatten @ self.embed
+ self.embed.pow(2).sum(0, keepdim=True)
) # dist map, shape=[*, n_embed]
if not continuous_relax:
# argmax + lookup
_, embed_ind = (-dist).max(1)
embed_onehot = F.one_hot(embed_ind, self.n_embed).type(flatten.dtype)
embed_ind = embed_ind.view(*input.shape[:-1])
quantize = self.embed_code(embed_ind)
elif not hard:
# gumbel softmax weighted sum
embed_soft, embed_ind = gumbel_softmax(-dist, tau=temperature, hard=False)
embed_ind = embed_ind.view(*input.shape[:-1])
embed_soft = embed_soft.view(*input.shape[:-1], self.n_embed)
quantize = embed_soft @ self.embed.transpose(0, 1)
else:
# gumbel softmax hard lookup
embed_onehot, embed_ind = gumbel_softmax(-dist, tau=temperature, hard=True)
embed_ind = embed_ind.view(*input.shape[:-1])
quantize = self.embed_code(embed_ind)
if self.training and ((continuous_relax and hard) or (not continuous_relax)):
embed_onehot_sum = embed_onehot.sum(0)
embed_sum = flatten.transpose(0, 1) @ embed_onehot
# dist_fn.all_reduce(embed_onehot_sum)
# dist_fn.all_reduce(embed_sum)
self.cluster_size.data.mul_(self.decay).add_(
embed_onehot_sum, alpha=1 - self.decay
)
self.embed_avg.data.mul_(self.decay).add_(embed_sum, alpha=1 - self.decay)
n = self.cluster_size.sum()
cluster_size = (
(self.cluster_size + self.eps) / (n + self.n_embed * self.eps) * n
)
embed_normalized = self.embed_avg / cluster_size.unsqueeze(0)
self.embed.data.copy_(embed_normalized)
if not continuous_relax:
diff = (quantize.detach() - input).pow(2).mean()
quantize = input + (quantize - input).detach()
else:
# maybe need replace a KL term here
qy = (-dist).softmax(-1)
diff = torch.sum(qy * torch.log(qy * self.n_embed + 1e-20), dim=-1).mean() # KL
#diff = (quantize - input).pow(2).mean().detach() # gumbel softmax do not need diff
quantize = quantize.to(memory_format=torch.channels_last)
return quantize, diff, embed_ind
def embed_code(self, embed_id):
return F.embedding(embed_id, self.embed.transpose(0, 1))
class ResBlock(nn.Module):
def __init__(self, in_channel, channel):
super().__init__()
self.conv = nn.Sequential(
nn.ReLU(inplace=True),
nn.Conv2d(in_channel, channel, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(channel, in_channel, 1),
)
def forward(self, input):
out = self.conv(input)
out += input
return out
class Encoder(nn.Module):
def __init__(self, in_channel, channel, n_res_block, n_res_channel, stride, embed_dim, n_embed, simple):
super().__init__()
if stride == 6:
if simple:
blocks = [
nn.Conv2d(in_channel, channel, 4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(channel, channel, 4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(channel, channel, 4, stride=2, padding=1),
]
else:
blocks = [
nn.Conv2d(in_channel, channel // 4, 4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(channel // 4, channel //2, 4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(channel //2, channel, 4, stride=2, padding=1),
]
elif stride == 4:
blocks = [
nn.Conv2d(in_channel, channel // 2, 4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(channel // 2, channel, 4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(channel, channel, 3, padding=1),
]
elif stride == 2:
blocks = [
nn.Conv2d(in_channel, channel // 2, 4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(channel // 2, channel, 3, padding=1),
]
for i in range(n_res_block):
blocks.append(ResBlock(channel, n_res_channel))
blocks.append(nn.ReLU(inplace=True))
blocks.append(nn.Conv2d(channel, embed_dim, 1))
self.blocks = nn.Sequential(*blocks)
def forward(self, input):
return self.blocks(input).permute(0, 2, 3, 1)
class Decoder(nn.Module):
def __init__(
self, in_channel, out_channel, channel, n_res_block, n_res_channel, stride, simple
):
super().__init__()
blocks = [
nn.ConvTranspose2d(in_channel, channel, 4, stride=2, padding=1),
]
for i in range(n_res_block):
blocks.append(ResBlock(channel, n_res_channel))
blocks.append(nn.ReLU(inplace=True))
if stride == 4 and simple:
blocks.extend(
[
nn.ConvTranspose2d(channel, channel, 4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(
channel, channel, 4, stride=2, padding=1
),
nn.ReLU(inplace=True),
nn.Conv2d(channel, out_channel, 1)
]
)
elif stride == 4:
blocks.extend(
[
nn.ConvTranspose2d(channel, channel, 4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(channel, channel // 2, 1),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(
channel // 2, out_channel, 4, stride=2, padding=1
),
]
)
elif stride == 2:
blocks.append(
nn.ConvTranspose2d(channel, out_channel, 4, stride=2, padding=1)
)
self.blocks = nn.Sequential(*blocks)
def forward(self, input):
return self.blocks(input)
class VQVAE(nn.Module):
def __init__(
self,
in_channel=3,
channel=128,
n_res_block=2,
n_res_channel=32,
embed_dim=64,
n_embed=1024,
stride=4,
simple=True,
decay=0.99,
dif=False,
ddconfig=None
):
super().__init__()
if channel == 2048:
n_res_block = 0
self.enc_b = Encoder(in_channel, channel, n_res_block, n_res_channel, stride, embed_dim, n_embed, simple)
self.quantize_t = Quantize(embed_dim, n_embed)
if dif:
self.dec = DifDecoder(**ddconfig)
else:
self.dec = Decoder(
in_channel=embed_dim,
out_channel=in_channel,
channel=channel,
n_res_block=n_res_block,
n_res_channel=n_res_channel,
stride=stride-2,
simple=simple
)
def forward(self, input, continuous_relax=False, temperature=1., hard=False, KL=False):
quant_t, diff, _, = self.encode(input, continuous_relax, temperature, hard, KL)
dec = self.dec(quant_t)
return dec, diff
def encode(self, input, continuous_relax=False, temperature=1., hard=False, KL=False):
logits = self.enc_b(input)
quant_t, diff_t, id_t = self.quantize_t.forward_(logits, continuous_relax, temperature, hard)
quant_t = quant_t.permute(0, 3, 1, 2)
if not continuous_relax or KL:
diff_t = diff_t.unsqueeze(0)
else:
diff_t = torch.zeros_like(diff_t).unsqueeze(0) # placeholder to return right shape
return quant_t, diff_t , id_t
def decode(self, code):
return self.dec(code)
def decode_code(self, code_t):
quant_t = self.quantize_t.embed_code(code_t)
quant_t = quant_t.permute(0, 3, 1, 2)
dec = self.dec(quant_t)
return dec
import torch
try:
from torch.overrides import has_torch_function, handle_torch_function
except ImportError as e:
from torch._overrides import has_torch_function, handle_torch_function
import warnings
Tensor = torch.Tensor
def gumbel_softmax(logits, tau=1, hard=False, eps=1e-10, dim=-1):
# type: (Tensor, float, bool, float, int) -> Tensor
r"""
Samples from the Gumbel-Softmax distribution (`Link 1`_ `Link 2`_) and optionally discretizes.
Args:
logits: `[..., num_features]` unnormalized log probabilities
tau: non-negative scalar temperature
hard: if ``True``, the returned samples will be discretized as one-hot vectors,
but will be differentiated as if it is the soft sample in autograd
dim (int): A dimension along which softmax will be computed. Default: -1.
Returns:
Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution.
If ``hard=True``, the returned samples will be one-hot, otherwise they will
be probability distributions that sum to 1 across `dim`.
.. note::
This function is here for legacy reasons, may be removed from nn.Functional in the future.
.. note::
The main trick for `hard` is to do `y_hard - y_soft.detach() + y_soft`
It achieves two things:
- makes the output value exactly one-hot
(since we add then subtract y_soft value)
- makes the gradient equal to y_soft gradient
(since we strip all other gradients)
Examples::
>>> logits = torch.randn(20, 32)
>>> # Sample soft categorical using reparametrization trick:
>>> F.gumbel_softmax(logits, tau=1, hard=False)
>>> # Sample hard categorical using "Straight-through" trick:
>>> F.gumbel_softmax(logits, tau=1, hard=True)
.. _Link 1:
https://arxiv.org/abs/1611.00712
.. _Link 2:
https://arxiv.org/abs/1611.01144
"""
if not torch.jit.is_scripting():
if type(logits) is not Tensor and has_torch_function((logits,)):
return handle_torch_function(
gumbel_softmax, (logits,), logits, tau=tau, hard=hard, eps=eps, dim=dim)
if eps != 1e-10:
warnings.warn("`eps` parameter is deprecated and has no effect.")
gumbels = -torch.empty_like(logits, memory_format=torch.legacy_contiguous_format).exponential_().log() # ~Gumbel(0,1)
gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau)
y_soft = gumbels.softmax(dim)
if hard:
# Straight through.
index = y_soft.max(dim, keepdim=True)[1]
y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
ret = y_hard - y_soft.detach() + y_soft
return ret, index
else:
# Reparametrization trick.
ret = y_soft
index = y_soft.max(dim, keepdim=True)[1]
return ret, index