modules/SwissArmyTransformer/sat/tokenization/cogview/vqvae/vqvae_zc.py (235 lines of code) (raw):

import torch from torch import nn from torch.nn import functional as F from .vqvae_diffusion import Decoder as DifDecoder # import distributed as dist_fn # Copyright 2018 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # Borrowed from https://github.com/deepmind/sonnet and ported it to PyTorch class Quantize(nn.Module): def __init__(self, dim, n_embed, decay=0.99, eps=1e-5): super().__init__() self.dim = dim self.n_embed = n_embed self.decay = decay self.eps = eps embed = torch.randn(dim, n_embed) torch.nn.init.xavier_uniform_(embed, gain=torch.nn.init.calculate_gain('tanh')) self.register_buffer("embed", embed) self.register_buffer("cluster_size", torch.zeros(n_embed)) self.register_buffer("embed_avg", embed.clone()) def forward_(self, input, continuous_relax=False, temperature=1., hard=False): flatten = input.reshape(-1, self.dim) dist = ( flatten.pow(2).sum(1, keepdim=True) - 2 * flatten @ self.embed + self.embed.pow(2).sum(0, keepdim=True) ) # dist map, shape=[*, n_embed] if not continuous_relax: # argmax + lookup _, embed_ind = (-dist).max(1) embed_onehot = F.one_hot(embed_ind, self.n_embed).type(flatten.dtype) embed_ind = embed_ind.view(*input.shape[:-1]) quantize = self.embed_code(embed_ind) elif not hard: # gumbel softmax weighted sum embed_soft, embed_ind = gumbel_softmax(-dist, tau=temperature, hard=False) embed_ind = embed_ind.view(*input.shape[:-1]) embed_soft = embed_soft.view(*input.shape[:-1], self.n_embed) quantize = embed_soft @ self.embed.transpose(0, 1) else: # gumbel softmax hard lookup embed_onehot, embed_ind = gumbel_softmax(-dist, tau=temperature, hard=True) embed_ind = embed_ind.view(*input.shape[:-1]) quantize = self.embed_code(embed_ind) if self.training and ((continuous_relax and hard) or (not continuous_relax)): embed_onehot_sum = embed_onehot.sum(0) embed_sum = flatten.transpose(0, 1) @ embed_onehot # dist_fn.all_reduce(embed_onehot_sum) # dist_fn.all_reduce(embed_sum) self.cluster_size.data.mul_(self.decay).add_( embed_onehot_sum, alpha=1 - self.decay ) self.embed_avg.data.mul_(self.decay).add_(embed_sum, alpha=1 - self.decay) n = self.cluster_size.sum() cluster_size = ( (self.cluster_size + self.eps) / (n + self.n_embed * self.eps) * n ) embed_normalized = self.embed_avg / cluster_size.unsqueeze(0) self.embed.data.copy_(embed_normalized) if not continuous_relax: diff = (quantize.detach() - input).pow(2).mean() quantize = input + (quantize - input).detach() else: # maybe need replace a KL term here qy = (-dist).softmax(-1) diff = torch.sum(qy * torch.log(qy * self.n_embed + 1e-20), dim=-1).mean() # KL #diff = (quantize - input).pow(2).mean().detach() # gumbel softmax do not need diff quantize = quantize.to(memory_format=torch.channels_last) return quantize, diff, embed_ind def embed_code(self, embed_id): return F.embedding(embed_id, self.embed.transpose(0, 1)) class ResBlock(nn.Module): def __init__(self, in_channel, channel): super().__init__() self.conv = nn.Sequential( nn.ReLU(inplace=True), nn.Conv2d(in_channel, channel, 3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(channel, in_channel, 1), ) def forward(self, input): out = self.conv(input) out += input return out class Encoder(nn.Module): def __init__(self, in_channel, channel, n_res_block, n_res_channel, stride, embed_dim, n_embed, simple): super().__init__() if stride == 6: if simple: blocks = [ nn.Conv2d(in_channel, channel, 4, stride=2, padding=1), nn.ReLU(inplace=True), nn.Conv2d(channel, channel, 4, stride=2, padding=1), nn.ReLU(inplace=True), nn.Conv2d(channel, channel, 4, stride=2, padding=1), ] else: blocks = [ nn.Conv2d(in_channel, channel // 4, 4, stride=2, padding=1), nn.ReLU(inplace=True), nn.Conv2d(channel // 4, channel //2, 4, stride=2, padding=1), nn.ReLU(inplace=True), nn.Conv2d(channel //2, channel, 4, stride=2, padding=1), ] elif stride == 4: blocks = [ nn.Conv2d(in_channel, channel // 2, 4, stride=2, padding=1), nn.ReLU(inplace=True), nn.Conv2d(channel // 2, channel, 4, stride=2, padding=1), nn.ReLU(inplace=True), nn.Conv2d(channel, channel, 3, padding=1), ] elif stride == 2: blocks = [ nn.Conv2d(in_channel, channel // 2, 4, stride=2, padding=1), nn.ReLU(inplace=True), nn.Conv2d(channel // 2, channel, 3, padding=1), ] for i in range(n_res_block): blocks.append(ResBlock(channel, n_res_channel)) blocks.append(nn.ReLU(inplace=True)) blocks.append(nn.Conv2d(channel, embed_dim, 1)) self.blocks = nn.Sequential(*blocks) def forward(self, input): return self.blocks(input).permute(0, 2, 3, 1) class Decoder(nn.Module): def __init__( self, in_channel, out_channel, channel, n_res_block, n_res_channel, stride, simple ): super().__init__() blocks = [ nn.ConvTranspose2d(in_channel, channel, 4, stride=2, padding=1), ] for i in range(n_res_block): blocks.append(ResBlock(channel, n_res_channel)) blocks.append(nn.ReLU(inplace=True)) if stride == 4 and simple: blocks.extend( [ nn.ConvTranspose2d(channel, channel, 4, stride=2, padding=1), nn.ReLU(inplace=True), nn.ConvTranspose2d( channel, channel, 4, stride=2, padding=1 ), nn.ReLU(inplace=True), nn.Conv2d(channel, out_channel, 1) ] ) elif stride == 4: blocks.extend( [ nn.ConvTranspose2d(channel, channel, 4, stride=2, padding=1), nn.ReLU(inplace=True), nn.ConvTranspose2d(channel, channel // 2, 1), nn.ReLU(inplace=True), nn.ConvTranspose2d( channel // 2, out_channel, 4, stride=2, padding=1 ), ] ) elif stride == 2: blocks.append( nn.ConvTranspose2d(channel, out_channel, 4, stride=2, padding=1) ) self.blocks = nn.Sequential(*blocks) def forward(self, input): return self.blocks(input) class VQVAE(nn.Module): def __init__( self, in_channel=3, channel=128, n_res_block=2, n_res_channel=32, embed_dim=64, n_embed=1024, stride=4, simple=True, decay=0.99, dif=False, ddconfig=None ): super().__init__() if channel == 2048: n_res_block = 0 self.enc_b = Encoder(in_channel, channel, n_res_block, n_res_channel, stride, embed_dim, n_embed, simple) self.quantize_t = Quantize(embed_dim, n_embed) if dif: self.dec = DifDecoder(**ddconfig) else: self.dec = Decoder( in_channel=embed_dim, out_channel=in_channel, channel=channel, n_res_block=n_res_block, n_res_channel=n_res_channel, stride=stride-2, simple=simple ) def forward(self, input, continuous_relax=False, temperature=1., hard=False, KL=False): quant_t, diff, _, = self.encode(input, continuous_relax, temperature, hard, KL) dec = self.dec(quant_t) return dec, diff def encode(self, input, continuous_relax=False, temperature=1., hard=False, KL=False): logits = self.enc_b(input) quant_t, diff_t, id_t = self.quantize_t.forward_(logits, continuous_relax, temperature, hard) quant_t = quant_t.permute(0, 3, 1, 2) if not continuous_relax or KL: diff_t = diff_t.unsqueeze(0) else: diff_t = torch.zeros_like(diff_t).unsqueeze(0) # placeholder to return right shape return quant_t, diff_t , id_t def decode(self, code): return self.dec(code) def decode_code(self, code_t): quant_t = self.quantize_t.embed_code(code_t) quant_t = quant_t.permute(0, 3, 1, 2) dec = self.dec(quant_t) return dec import torch try: from torch.overrides import has_torch_function, handle_torch_function except ImportError as e: from torch._overrides import has_torch_function, handle_torch_function import warnings Tensor = torch.Tensor def gumbel_softmax(logits, tau=1, hard=False, eps=1e-10, dim=-1): # type: (Tensor, float, bool, float, int) -> Tensor r""" Samples from the Gumbel-Softmax distribution (`Link 1`_ `Link 2`_) and optionally discretizes. Args: logits: `[..., num_features]` unnormalized log probabilities tau: non-negative scalar temperature hard: if ``True``, the returned samples will be discretized as one-hot vectors, but will be differentiated as if it is the soft sample in autograd dim (int): A dimension along which softmax will be computed. Default: -1. Returns: Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution. If ``hard=True``, the returned samples will be one-hot, otherwise they will be probability distributions that sum to 1 across `dim`. .. note:: This function is here for legacy reasons, may be removed from nn.Functional in the future. .. note:: The main trick for `hard` is to do `y_hard - y_soft.detach() + y_soft` It achieves two things: - makes the output value exactly one-hot (since we add then subtract y_soft value) - makes the gradient equal to y_soft gradient (since we strip all other gradients) Examples:: >>> logits = torch.randn(20, 32) >>> # Sample soft categorical using reparametrization trick: >>> F.gumbel_softmax(logits, tau=1, hard=False) >>> # Sample hard categorical using "Straight-through" trick: >>> F.gumbel_softmax(logits, tau=1, hard=True) .. _Link 1: https://arxiv.org/abs/1611.00712 .. _Link 2: https://arxiv.org/abs/1611.01144 """ if not torch.jit.is_scripting(): if type(logits) is not Tensor and has_torch_function((logits,)): return handle_torch_function( gumbel_softmax, (logits,), logits, tau=tau, hard=hard, eps=eps, dim=dim) if eps != 1e-10: warnings.warn("`eps` parameter is deprecated and has no effect.") gumbels = -torch.empty_like(logits, memory_format=torch.legacy_contiguous_format).exponential_().log() # ~Gumbel(0,1) gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau) y_soft = gumbels.softmax(dim) if hard: # Straight through. index = y_soft.max(dim, keepdim=True)[1] y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0) ret = y_hard - y_soft.detach() + y_soft return ret, index else: # Reparametrization trick. ret = y_soft index = y_soft.max(dim, keepdim=True)[1] return ret, index