sat/configs/tora/train_dense.yaml (63 lines of code) (raw):
args:
checkpoint_activations: True
model_parallel_size: 1
mode: finetune
load: "ckpts/CogVideoX-5b-sat"
no_load_rng: True
train_iters: 15000
eval_iters: 1
eval_interval: 99999
eval_batch_size: 1
save: outputs
save_interval: 2000
log_interval: 1
train_data: ["sat/training_examples"]
valid_data: ["sat/training_examples"]
split: 1,0,0
num_workers: 8
force_train: True
only_log_video_latents: True
vis_traj_features: False
sample_flow: False
seed: 1234
data:
target: data_video.SFTDataset
params:
video_size: [480, 720]
fps: 8
max_num_frames: 49
skip_frms_num: 3.
deepspeed:
train_micro_batch_size_per_gpu: 1
gradient_accumulation_steps: 1
steps_per_print: 50
gradient_clipping: 0.1
zero_optimization:
stage: 2
cpu_offload: false
contiguous_gradients: false
overlap_comm: true
reduce_scatter: true
reduce_bucket_size: 1000000000
allgather_bucket_size: 1000000000
load_from_fp32_weights: false
zero_allow_untested_optimizer: true
bf16:
enabled: True
fp16:
enabled: False
loss_scale: 0
loss_scale_window: 400
hysteresis: 2
min_loss_scale: 1
optimizer:
type: sat.ops.FusedEmaAdam
params:
lr: 0.0001
betas: [0.9, 0.95]
eps: 1e-8
weight_decay: 1e-4
activation_checkpointing:
partition_activations: false
contiguous_memory_optimization: false
wall_clock_breakdown: false