sat/sgm/modules/autoencoding/regularizers/quantize.py (338 lines of code) (raw):
import logging
from abc import abstractmethod
from typing import Dict, Iterator, Literal, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch import einsum
from .base import AbstractRegularizer, measure_perplexity
logpy = logging.getLogger(__name__)
class AbstractQuantizer(AbstractRegularizer):
def __init__(self):
super().__init__()
# Define these in your init
# shape (N,)
self.used: Optional[torch.Tensor]
self.re_embed: int
self.unknown_index: Union[Literal["random"], int]
def remap_to_used(self, inds: torch.Tensor) -> torch.Tensor:
assert self.used is not None, "You need to define used indices for remap"
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape(ishape[0], -1)
used = self.used.to(inds)
match = (inds[:, :, None] == used[None, None, ...]).long()
new = match.argmax(-1)
unknown = match.sum(2) < 1
if self.unknown_index == "random":
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
else:
new[unknown] = self.unknown_index
return new.reshape(ishape)
def unmap_to_all(self, inds: torch.Tensor) -> torch.Tensor:
assert self.used is not None, "You need to define used indices for remap"
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape(ishape[0], -1)
used = self.used.to(inds)
if self.re_embed > self.used.shape[0]: # extra token
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
return back.reshape(ishape)
@abstractmethod
def get_codebook_entry(self, indices: torch.Tensor, shape: Optional[Tuple[int, ...]] = None) -> torch.Tensor:
raise NotImplementedError()
def get_trainable_parameters(self) -> Iterator[torch.nn.Parameter]:
yield from self.parameters()
class GumbelQuantizer(AbstractQuantizer):
"""
credit to @karpathy:
https://github.com/karpathy/deep-vector-quantization/blob/main/model.py (thanks!)
Gumbel Softmax trick quantizer
Categorical Reparameterization with Gumbel-Softmax, Jang et al. 2016
https://arxiv.org/abs/1611.01144
"""
def __init__(
self,
num_hiddens: int,
embedding_dim: int,
n_embed: int,
straight_through: bool = True,
kl_weight: float = 5e-4,
temp_init: float = 1.0,
remap: Optional[str] = None,
unknown_index: str = "random",
loss_key: str = "loss/vq",
) -> None:
super().__init__()
self.loss_key = loss_key
self.embedding_dim = embedding_dim
self.n_embed = n_embed
self.straight_through = straight_through
self.temperature = temp_init
self.kl_weight = kl_weight
self.proj = nn.Conv2d(num_hiddens, n_embed, 1)
self.embed = nn.Embedding(n_embed, embedding_dim)
self.remap = remap
if self.remap is not None:
self.register_buffer("used", torch.tensor(np.load(self.remap)))
self.re_embed = self.used.shape[0]
else:
self.used = None
self.re_embed = n_embed
if unknown_index == "extra":
self.unknown_index = self.re_embed
self.re_embed = self.re_embed + 1
else:
assert unknown_index == "random" or isinstance(
unknown_index, int
), "unknown index needs to be 'random', 'extra' or any integer"
self.unknown_index = unknown_index # "random" or "extra" or integer
if self.remap is not None:
logpy.info(
f"Remapping {self.n_embed} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices."
)
def forward(
self, z: torch.Tensor, temp: Optional[float] = None, return_logits: bool = False
) -> Tuple[torch.Tensor, Dict]:
# force hard = True when we are in eval mode, as we must quantize.
# actually, always true seems to work
hard = self.straight_through if self.training else True
temp = self.temperature if temp is None else temp
out_dict = {}
logits = self.proj(z)
if self.remap is not None:
# continue only with used logits
full_zeros = torch.zeros_like(logits)
logits = logits[:, self.used, ...]
soft_one_hot = F.gumbel_softmax(logits, tau=temp, dim=1, hard=hard)
if self.remap is not None:
# go back to all entries but unused set to zero
full_zeros[:, self.used, ...] = soft_one_hot
soft_one_hot = full_zeros
z_q = einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight)
# + kl divergence to the prior loss
qy = F.softmax(logits, dim=1)
diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.n_embed + 1e-10), dim=1).mean()
out_dict[self.loss_key] = diff
ind = soft_one_hot.argmax(dim=1)
out_dict["indices"] = ind
if self.remap is not None:
ind = self.remap_to_used(ind)
if return_logits:
out_dict["logits"] = logits
return z_q, out_dict
def get_codebook_entry(self, indices, shape):
# TODO: shape not yet optional
b, h, w, c = shape
assert b * h * w == indices.shape[0]
indices = rearrange(indices, "(b h w) -> b h w", b=b, h=h, w=w)
if self.remap is not None:
indices = self.unmap_to_all(indices)
one_hot = F.one_hot(indices, num_classes=self.n_embed).permute(0, 3, 1, 2).float()
z_q = einsum("b n h w, n d -> b d h w", one_hot, self.embed.weight)
return z_q
class VectorQuantizer(AbstractQuantizer):
"""
____________________________________________
Discretization bottleneck part of the VQ-VAE.
Inputs:
- n_e : number of embeddings
- e_dim : dimension of embedding
- beta : commitment cost used in loss term,
beta * ||z_e(x)-sg[e]||^2
_____________________________________________
"""
def __init__(
self,
n_e: int,
e_dim: int,
beta: float = 0.25,
remap: Optional[str] = None,
unknown_index: str = "random",
sane_index_shape: bool = False,
log_perplexity: bool = False,
embedding_weight_norm: bool = False,
loss_key: str = "loss/vq",
):
super().__init__()
self.n_e = n_e
self.e_dim = e_dim
self.beta = beta
self.loss_key = loss_key
if not embedding_weight_norm:
self.embedding = nn.Embedding(self.n_e, self.e_dim)
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
else:
self.embedding = torch.nn.utils.weight_norm(nn.Embedding(self.n_e, self.e_dim), dim=1)
self.remap = remap
if self.remap is not None:
self.register_buffer("used", torch.tensor(np.load(self.remap)))
self.re_embed = self.used.shape[0]
else:
self.used = None
self.re_embed = n_e
if unknown_index == "extra":
self.unknown_index = self.re_embed
self.re_embed = self.re_embed + 1
else:
assert unknown_index == "random" or isinstance(
unknown_index, int
), "unknown index needs to be 'random', 'extra' or any integer"
self.unknown_index = unknown_index # "random" or "extra" or integer
if self.remap is not None:
logpy.info(
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices."
)
self.sane_index_shape = sane_index_shape
self.log_perplexity = log_perplexity
def forward(
self,
z: torch.Tensor,
) -> Tuple[torch.Tensor, Dict]:
do_reshape = z.ndim == 4
if do_reshape:
# # reshape z -> (batch, height, width, channel) and flatten
z = rearrange(z, "b c h w -> b h w c").contiguous()
else:
assert z.ndim < 4, "No reshaping strategy for inputs > 4 dimensions defined"
z = z.contiguous()
z_flattened = z.view(-1, self.e_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
d = (
torch.sum(z_flattened**2, dim=1, keepdim=True)
+ torch.sum(self.embedding.weight**2, dim=1)
- 2 * torch.einsum("bd,dn->bn", z_flattened, rearrange(self.embedding.weight, "n d -> d n"))
)
min_encoding_indices = torch.argmin(d, dim=1)
z_q = self.embedding(min_encoding_indices).view(z.shape)
loss_dict = {}
if self.log_perplexity:
perplexity, cluster_usage = measure_perplexity(min_encoding_indices.detach(), self.n_e)
loss_dict.update({"perplexity": perplexity, "cluster_usage": cluster_usage})
# compute loss for embedding
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
loss_dict[self.loss_key] = loss
# preserve gradients
z_q = z + (z_q - z).detach()
# reshape back to match original input shape
if do_reshape:
z_q = rearrange(z_q, "b h w c -> b c h w").contiguous()
if self.remap is not None:
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
min_encoding_indices = self.remap_to_used(min_encoding_indices)
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
if self.sane_index_shape:
if do_reshape:
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])
else:
min_encoding_indices = rearrange(min_encoding_indices, "(b s) 1 -> b s", b=z_q.shape[0])
loss_dict["min_encoding_indices"] = min_encoding_indices
return z_q, loss_dict
def get_codebook_entry(self, indices: torch.Tensor, shape: Optional[Tuple[int, ...]] = None) -> torch.Tensor:
# shape specifying (batch, height, width, channel)
if self.remap is not None:
assert shape is not None, "Need to give shape for remap"
indices = indices.reshape(shape[0], -1) # add batch axis
indices = self.unmap_to_all(indices)
indices = indices.reshape(-1) # flatten again
# get quantized latent vectors
z_q = self.embedding(indices)
if shape is not None:
z_q = z_q.view(shape)
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q
class EmbeddingEMA(nn.Module):
def __init__(self, num_tokens, codebook_dim, decay=0.99, eps=1e-5):
super().__init__()
self.decay = decay
self.eps = eps
weight = torch.randn(num_tokens, codebook_dim)
self.weight = nn.Parameter(weight, requires_grad=False)
self.cluster_size = nn.Parameter(torch.zeros(num_tokens), requires_grad=False)
self.embed_avg = nn.Parameter(weight.clone(), requires_grad=False)
self.update = True
def forward(self, embed_id):
return F.embedding(embed_id, self.weight)
def cluster_size_ema_update(self, new_cluster_size):
self.cluster_size.data.mul_(self.decay).add_(new_cluster_size, alpha=1 - self.decay)
def embed_avg_ema_update(self, new_embed_avg):
self.embed_avg.data.mul_(self.decay).add_(new_embed_avg, alpha=1 - self.decay)
def weight_update(self, num_tokens):
n = self.cluster_size.sum()
smoothed_cluster_size = (self.cluster_size + self.eps) / (n + num_tokens * self.eps) * n
# normalize embedding average with smoothed cluster size
embed_normalized = self.embed_avg / smoothed_cluster_size.unsqueeze(1)
self.weight.data.copy_(embed_normalized)
class EMAVectorQuantizer(AbstractQuantizer):
def __init__(
self,
n_embed: int,
embedding_dim: int,
beta: float,
decay: float = 0.99,
eps: float = 1e-5,
remap: Optional[str] = None,
unknown_index: str = "random",
loss_key: str = "loss/vq",
):
super().__init__()
self.codebook_dim = embedding_dim
self.num_tokens = n_embed
self.beta = beta
self.loss_key = loss_key
self.embedding = EmbeddingEMA(self.num_tokens, self.codebook_dim, decay, eps)
self.remap = remap
if self.remap is not None:
self.register_buffer("used", torch.tensor(np.load(self.remap)))
self.re_embed = self.used.shape[0]
else:
self.used = None
self.re_embed = n_embed
if unknown_index == "extra":
self.unknown_index = self.re_embed
self.re_embed = self.re_embed + 1
else:
assert unknown_index == "random" or isinstance(
unknown_index, int
), "unknown index needs to be 'random', 'extra' or any integer"
self.unknown_index = unknown_index # "random" or "extra" or integer
if self.remap is not None:
logpy.info(
f"Remapping {self.n_embed} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices."
)
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, Dict]:
# reshape z -> (batch, height, width, channel) and flatten
# z, 'b c h w -> b h w c'
z = rearrange(z, "b c h w -> b h w c")
z_flattened = z.reshape(-1, self.codebook_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
d = (
z_flattened.pow(2).sum(dim=1, keepdim=True)
+ self.embedding.weight.pow(2).sum(dim=1)
- 2 * torch.einsum("bd,nd->bn", z_flattened, self.embedding.weight)
) # 'n d -> d n'
encoding_indices = torch.argmin(d, dim=1)
z_q = self.embedding(encoding_indices).view(z.shape)
encodings = F.one_hot(encoding_indices, self.num_tokens).type(z.dtype)
avg_probs = torch.mean(encodings, dim=0)
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
if self.training and self.embedding.update:
# EMA cluster size
encodings_sum = encodings.sum(0)
self.embedding.cluster_size_ema_update(encodings_sum)
# EMA embedding average
embed_sum = encodings.transpose(0, 1) @ z_flattened
self.embedding.embed_avg_ema_update(embed_sum)
# normalize embed_avg and update weight
self.embedding.weight_update(self.num_tokens)
# compute loss for embedding
loss = self.beta * F.mse_loss(z_q.detach(), z)
# preserve gradients
z_q = z + (z_q - z).detach()
# reshape back to match original input shape
# z_q, 'b h w c -> b c h w'
z_q = rearrange(z_q, "b h w c -> b c h w")
out_dict = {
self.loss_key: loss,
"encodings": encodings,
"encoding_indices": encoding_indices,
"perplexity": perplexity,
}
return z_q, out_dict
class VectorQuantizerWithInputProjection(VectorQuantizer):
def __init__(
self,
input_dim: int,
n_codes: int,
codebook_dim: int,
beta: float = 1.0,
output_dim: Optional[int] = None,
**kwargs,
):
super().__init__(n_codes, codebook_dim, beta, **kwargs)
self.proj_in = nn.Linear(input_dim, codebook_dim)
self.output_dim = output_dim
if output_dim is not None:
self.proj_out = nn.Linear(codebook_dim, output_dim)
else:
self.proj_out = nn.Identity()
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, Dict]:
rearr = False
in_shape = z.shape
if z.ndim > 3:
rearr = self.output_dim is not None
z = rearrange(z, "b c ... -> b (...) c")
z = self.proj_in(z)
z_q, loss_dict = super().forward(z)
z_q = self.proj_out(z_q)
if rearr:
if len(in_shape) == 4:
z_q = rearrange(z_q, "b (h w) c -> b c h w ", w=in_shape[-1])
elif len(in_shape) == 5:
z_q = rearrange(z_q, "b (t h w) c -> b c t h w ", w=in_shape[-1], h=in_shape[-2])
else:
raise NotImplementedError(f"rearranging not available for {len(in_shape)}-dimensional input.")
return z_q, loss_dict