import os
import math
from abc import abstractmethod
from functools import partial
from typing import Iterable, List, Optional, Tuple, Union

import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange

from ...modules.attention import SpatialTransformer
from ...modules.diffusionmodules.util import (
    avg_pool_nd,
    checkpoint,
    conv_nd,
    linear,
    normalization,
    timestep_embedding,
    zero_module,
)
from ...modules.diffusionmodules.lora import inject_trainable_lora_extended, update_lora_scale
from ...modules.video_attention import SpatialVideoTransformer
from ...util import default, exists


# dummy replace
def convert_module_to_f16(x):
    pass


def convert_module_to_f32(x):
    pass


## go
class AttentionPool2d(nn.Module):
    """
    Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
    """

    def __init__(
        self,
        spacial_dim: int,
        embed_dim: int,
        num_heads_channels: int,
        output_dim: int = None,
    ):
        super().__init__()
        self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5)
        self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
        self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
        self.num_heads = embed_dim // num_heads_channels
        self.attention = QKVAttention(self.num_heads)

    def forward(self, x):
        b, c, *_spatial = x.shape
        x = x.reshape(b, c, -1)  # NC(HW)
        x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1)  # NC(HW+1)
        x = x + self.positional_embedding[None, :, :].to(x.dtype)  # NC(HW+1)
        x = self.qkv_proj(x)
        x = self.attention(x)
        x = self.c_proj(x)
        return x[:, :, 0]


class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """


class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
    A sequential module that passes timestep embeddings to the children that
    support it as an extra input.
    """

    def forward(
        self,
        x: th.Tensor,
        emb: th.Tensor,
        context: Optional[th.Tensor] = None,
        image_only_indicator: Optional[th.Tensor] = None,
        time_context: Optional[int] = None,
        num_video_frames: Optional[int] = None,
    ):
        from ...modules.diffusionmodules.video_model import VideoResBlock

        for layer in self:
            module = layer

            if isinstance(module, TimestepBlock) and not isinstance(module, VideoResBlock):
                x = layer(x, emb)
            elif isinstance(module, VideoResBlock):
                x = layer(x, emb, num_video_frames, image_only_indicator)
            elif isinstance(module, SpatialVideoTransformer):
                x = layer(
                    x,
                    context,
                    time_context,
                    num_video_frames,
                    image_only_indicator,
                )
            elif isinstance(module, SpatialTransformer):
                x = layer(x, context)
            else:
                x = layer(x)
        return x


class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 upsampling occurs in the inner-two dimensions.
    """

    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, third_up=False):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.third_up = third_up
        if use_conv:
            self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.dims == 3:
            t_factor = 1 if not self.third_up else 2
            x = F.interpolate(
                x,
                (t_factor * x.shape[2], x.shape[3] * 2, x.shape[4] * 2),
                mode="nearest",
            )
        else:
            x = F.interpolate(x, scale_factor=2, mode="nearest")
        if self.use_conv:
            x = self.conv(x)
        return x


class TransposedUpsample(nn.Module):
    "Learned 2x upsampling without padding"

    def __init__(self, channels, out_channels=None, ks=5):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels

        self.up = nn.ConvTranspose2d(self.channels, self.out_channels, kernel_size=ks, stride=2)

    def forward(self, x):
        return self.up(x)


class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.
    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 downsampling occurs in the inner-two dimensions.
    """

    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, third_down=False):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else ((1, 2, 2) if not third_down else (2, 2, 2))
        if use_conv:
            print(f"Building a Downsample layer with {dims} dims.")
            print(
                f"  --> settings are: \n in-chn: {self.channels}, out-chn: {self.out_channels}, "
                f"kernel-size: 3, stride: {stride}, padding: {padding}"
            )
            if dims == 3:
                print(f"  --> Downsampling third axis (time): {third_down}")
            self.op = conv_nd(
                dims,
                self.channels,
                self.out_channels,
                3,
                stride=stride,
                padding=padding,
            )
        else:
            assert self.channels == self.out_channels
            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        return self.op(x)


class ResBlock(TimestepBlock):
    """
    A residual block that can optionally change the number of channels.
    :param channels: the number of input channels.
    :param emb_channels: the number of timestep embedding channels.
    :param dropout: the rate of dropout.
    :param out_channels: if specified, the number of out channels.
    :param use_conv: if True and out_channels is specified, use a spatial
        convolution instead of a smaller 1x1 convolution to change the
        channels in the skip connection.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param use_checkpoint: if True, use gradient checkpointing on this module.
    :param up: if True, use this block for upsampling.
    :param down: if True, use this block for downsampling.
    """

    def __init__(
        self,
        channels,
        emb_channels,
        dropout,
        out_channels=None,
        use_conv=False,
        use_scale_shift_norm=False,
        dims=2,
        use_checkpoint=False,
        up=False,
        down=False,
        kernel_size=3,
        exchange_temb_dims=False,
        skip_t_emb=False,
    ):
        super().__init__()
        self.channels = channels
        self.emb_channels = emb_channels
        self.dropout = dropout
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm
        self.exchange_temb_dims = exchange_temb_dims

        if isinstance(kernel_size, Iterable):
            padding = [k // 2 for k in kernel_size]
        else:
            padding = kernel_size // 2

        self.in_layers = nn.Sequential(
            normalization(channels),
            nn.SiLU(),
            conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding),
        )

        self.updown = up or down

        if up:
            self.h_upd = Upsample(channels, False, dims)
            self.x_upd = Upsample(channels, False, dims)
        elif down:
            self.h_upd = Downsample(channels, False, dims)
            self.x_upd = Downsample(channels, False, dims)
        else:
            self.h_upd = self.x_upd = nn.Identity()

        self.skip_t_emb = skip_t_emb
        self.emb_out_channels = 2 * self.out_channels if use_scale_shift_norm else self.out_channels
        if self.skip_t_emb:
            print(f"Skipping timestep embedding in {self.__class__.__name__}")
            assert not self.use_scale_shift_norm
            self.emb_layers = None
            self.exchange_temb_dims = False
        else:
            self.emb_layers = nn.Sequential(
                nn.SiLU(),
                linear(
                    emb_channels,
                    self.emb_out_channels,
                ),
            )

        self.out_layers = nn.Sequential(
            normalization(self.out_channels),
            nn.SiLU(),
            nn.Dropout(p=dropout),
            zero_module(
                conv_nd(
                    dims,
                    self.out_channels,
                    self.out_channels,
                    kernel_size,
                    padding=padding,
                )
            ),
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding)
        else:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)

    def forward(self, x, emb):
        """
        Apply the block to a Tensor, conditioned on a timestep embedding.
        :param x: an [N x C x ...] Tensor of features.
        :param emb: an [N x emb_channels] Tensor of timestep embeddings.
        :return: an [N x C x ...] Tensor of outputs.
        """
        return checkpoint(self._forward, (x, emb), self.parameters(), self.use_checkpoint)

    def _forward(self, x, emb):
        if self.updown:
            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
            h = in_rest(x)
            h = self.h_upd(h)
            x = self.x_upd(x)
            h = in_conv(h)
        else:
            h = self.in_layers(x)

        if self.skip_t_emb:
            emb_out = th.zeros_like(h)
        else:
            emb_out = self.emb_layers(emb).type(h.dtype)
        while len(emb_out.shape) < len(h.shape):
            emb_out = emb_out[..., None]
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
            scale, shift = th.chunk(emb_out, 2, dim=1)
            h = out_norm(h) * (1 + scale) + shift
            h = out_rest(h)
        else:
            if self.exchange_temb_dims:
                emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
            h = h + emb_out
            h = self.out_layers(h)
        return self.skip_connection(x) + h


class AttentionBlock(nn.Module):
    """
    An attention block that allows spatial positions to attend to each other.
    Originally ported from here, but adapted to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
    """

    def __init__(
        self,
        channels,
        num_heads=1,
        num_head_channels=-1,
        use_checkpoint=False,
        use_new_attention_order=False,
    ):
        super().__init__()
        self.channels = channels
        if num_head_channels == -1:
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels
        self.use_checkpoint = use_checkpoint
        self.norm = normalization(channels)
        self.qkv = conv_nd(1, channels, channels * 3, 1)
        if use_new_attention_order:
            # split qkv before split heads
            self.attention = QKVAttention(self.num_heads)
        else:
            # split heads before split qkv
            self.attention = QKVAttentionLegacy(self.num_heads)

        self.proj_out = zero_module(conv_nd(1, channels, channels, 1))

    def forward(self, x, **kwargs):
        # TODO add crossframe attention and use mixed checkpoint
        return checkpoint(
            self._forward, (x,), self.parameters(), True
        )  # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
        # return pt_checkpoint(self._forward, x)  # pytorch

    def _forward(self, x):
        b, c, *spatial = x.shape
        x = x.reshape(b, c, -1)
        qkv = self.qkv(self.norm(x))
        h = self.attention(qkv)
        h = self.proj_out(h)
        return (x + h).reshape(b, c, *spatial)


def count_flops_attn(model, _x, y):
    """
    A counter for the `thop` package to count the operations in an
    attention operation.
    Meant to be used like:
        macs, params = thop.profile(
            model,
            inputs=(inputs, timestamps),
            custom_ops={QKVAttention: QKVAttention.count_flops},
        )
    """
    b, c, *spatial = y[0].shape
    num_spatial = int(np.prod(spatial))
    # We perform two matmuls with the same number of ops.
    # The first computes the weight matrix, the second computes
    # the combination of the value vectors.
    matmul_ops = 2 * b * (num_spatial**2) * c
    model.total_ops += th.DoubleTensor([matmul_ops])


class QKVAttentionLegacy(nn.Module):
    """
    A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
    """

    def __init__(self, n_heads):
        super().__init__()
        self.n_heads = n_heads

    def forward(self, qkv):
        """
        Apply QKV attention.
        :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
        :return: an [N x (H * C) x T] tensor after attention.
        """
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
        scale = 1 / math.sqrt(math.sqrt(ch))
        weight = th.einsum("bct,bcs->bts", q * scale, k * scale)  # More stable with f16 than dividing afterwards
        weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
        a = th.einsum("bts,bcs->bct", weight, v)
        return a.reshape(bs, -1, length)

    @staticmethod
    def count_flops(model, _x, y):
        return count_flops_attn(model, _x, y)


class QKVAttention(nn.Module):
    """
    A module which performs QKV attention and splits in a different order.
    """

    def __init__(self, n_heads):
        super().__init__()
        self.n_heads = n_heads

    def forward(self, qkv):
        """
        Apply QKV attention.
        :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
        :return: an [N x (H * C) x T] tensor after attention.
        """
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.chunk(3, dim=1)
        scale = 1 / math.sqrt(math.sqrt(ch))
        weight = th.einsum(
            "bct,bcs->bts",
            (q * scale).view(bs * self.n_heads, ch, length),
            (k * scale).view(bs * self.n_heads, ch, length),
        )  # More stable with f16 than dividing afterwards
        weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
        a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
        return a.reshape(bs, -1, length)

    @staticmethod
    def count_flops(model, _x, y):
        return count_flops_attn(model, _x, y)


class Timestep(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, t):
        return timestep_embedding(t, self.dim)


str_to_dtype = {"fp32": th.float32, "fp16": th.float16, "bf16": th.bfloat16}


class UNetModel(nn.Module):
    """
    The full UNet model with attention and timestep embedding.
    :param in_channels: channels in the input Tensor.
    :param model_channels: base channel count for the model.
    :param out_channels: channels in the output Tensor.
    :param num_res_blocks: number of residual blocks per downsample.
    :param attention_resolutions: a collection of downsample rates at which
        attention will take place. May be a set, list, or tuple.
        For example, if this contains 4, then at 4x downsampling, attention
        will be used.
    :param dropout: the dropout probability.
    :param channel_mult: channel multiplier for each level of the UNet.
    :param conv_resample: if True, use learned convolutions for upsampling and
        downsampling.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param num_classes: if specified (as an int), then this model will be
        class-conditional with `num_classes` classes.
    :param use_checkpoint: use gradient checkpointing to reduce memory usage.
    :param num_heads: the number of attention heads in each attention layer.
    :param num_heads_channels: if specified, ignore num_heads and instead use
                               a fixed channel width per attention head.
    :param num_heads_upsample: works with num_heads to set a different number
                               of heads for upsampling. Deprecated.
    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
    :param resblock_updown: use residual blocks for up/downsampling.
    :param use_new_attention_order: use a different attention pattern for potentially
                                    increased efficiency.
    """

    def __init__(
        self,
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        attention_resolutions,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        num_classes=None,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=-1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        use_new_attention_order=False,
        use_spatial_transformer=False,  # custom transformer support
        transformer_depth=1,  # custom transformer support
        context_dim=None,  # custom transformer support
        n_embed=None,  # custom support for prediction of discrete ids into codebook of first stage vq model
        legacy=True,
        disable_self_attentions=None,
        num_attention_blocks=None,
        disable_middle_self_attn=False,
        use_linear_in_transformer=False,
        spatial_transformer_attn_type="softmax",
        adm_in_channels=None,
        use_fairscale_checkpoint=False,
        offload_to_cpu=False,
        transformer_depth_middle=None,
        dtype="fp32",
        lora_init=False,
        lora_rank=4,
        lora_scale=1.0,
        lora_weight_path=None,
    ):
        super().__init__()
        from omegaconf.listconfig import ListConfig

        self.dtype = str_to_dtype[dtype]

        if use_spatial_transformer:
            assert (
                context_dim is not None
            ), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."

        if context_dim is not None:
            assert (
                use_spatial_transformer
            ), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
            if type(context_dim) == ListConfig:
                context_dim = list(context_dim)

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if num_heads == -1:
            assert num_head_channels != -1, "Either num_heads or num_head_channels has to be set"

        if num_head_channels == -1:
            assert num_heads != -1, "Either num_heads or num_head_channels has to be set"

        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        if isinstance(transformer_depth, int):
            transformer_depth = len(channel_mult) * [transformer_depth]
        elif isinstance(transformer_depth, ListConfig):
            transformer_depth = list(transformer_depth)
        transformer_depth_middle = default(transformer_depth_middle, transformer_depth[-1])

        if isinstance(num_res_blocks, int):
            self.num_res_blocks = len(channel_mult) * [num_res_blocks]
        else:
            if len(num_res_blocks) != len(channel_mult):
                raise ValueError(
                    "provide num_res_blocks either as an int (globally constant) or "
                    "as a list/tuple (per-level) with the same length as channel_mult"
                )
            self.num_res_blocks = num_res_blocks
        # self.num_res_blocks = num_res_blocks
        if disable_self_attentions is not None:
            # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
            assert len(disable_self_attentions) == len(channel_mult)
        if num_attention_blocks is not None:
            assert len(num_attention_blocks) == len(self.num_res_blocks)
            assert all(
                map(
                    lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
                    range(len(num_attention_blocks)),
                )
            )
            print(
                f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
                f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
                f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
                f"attention will still not be set."
            )  # todo: convert to warning

        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
        if use_fp16:
            print("WARNING: use_fp16 was dropped and has no effect anymore.")
        # self.dtype = th.float16 if use_fp16 else th.float32
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
        self.predict_codebook_ids = n_embed is not None

        assert use_fairscale_checkpoint != use_checkpoint or not (use_checkpoint or use_fairscale_checkpoint)

        self.use_fairscale_checkpoint = False
        checkpoint_wrapper_fn = (
            partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu)
            if self.use_fairscale_checkpoint
            else lambda x: x
        )

        time_embed_dim = model_channels * 4
        self.time_embed = checkpoint_wrapper_fn(
            nn.Sequential(
                linear(model_channels, time_embed_dim),
                nn.SiLU(),
                linear(time_embed_dim, time_embed_dim),
            )
        )

        if self.num_classes is not None:
            if isinstance(self.num_classes, int):
                self.label_emb = nn.Embedding(num_classes, time_embed_dim)
            elif self.num_classes == "continuous":
                print("setting up linear c_adm embedding layer")
                self.label_emb = nn.Linear(1, time_embed_dim)
            elif self.num_classes == "timestep":
                self.label_emb = checkpoint_wrapper_fn(
                    nn.Sequential(
                        Timestep(model_channels),
                        nn.Sequential(
                            linear(model_channels, time_embed_dim),
                            nn.SiLU(),
                            linear(time_embed_dim, time_embed_dim),
                        ),
                    )
                )
            elif self.num_classes == "sequential":
                assert adm_in_channels is not None
                self.label_emb = nn.Sequential(
                    nn.Sequential(
                        linear(adm_in_channels, time_embed_dim),
                        nn.SiLU(),
                        linear(time_embed_dim, time_embed_dim),
                    )
                )
            else:
                raise ValueError()

        self.input_blocks = nn.ModuleList(
            [TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))]
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for nr in range(self.num_res_blocks[level]):
                layers = [
                    checkpoint_wrapper_fn(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=mult * model_channels,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                        )
                    )
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        # num_heads = 1
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
                        layers.append(
                            checkpoint_wrapper_fn(
                                AttentionBlock(
                                    ch,
                                    use_checkpoint=use_checkpoint,
                                    num_heads=num_heads,
                                    num_head_channels=dim_head,
                                    use_new_attention_order=use_new_attention_order,
                                )
                            )
                            if not use_spatial_transformer
                            else checkpoint_wrapper_fn(
                                SpatialTransformer(
                                    ch,
                                    num_heads,
                                    dim_head,
                                    depth=transformer_depth[level],
                                    context_dim=context_dim,
                                    disable_self_attn=disabled_sa,
                                    use_linear=use_linear_in_transformer,
                                    attn_type=spatial_transformer_attn_type,
                                    use_checkpoint=use_checkpoint,
                                )
                            )
                        )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        checkpoint_wrapper_fn(
                            ResBlock(
                                ch,
                                time_embed_dim,
                                dropout,
                                out_channels=out_ch,
                                dims=dims,
                                use_checkpoint=use_checkpoint,
                                use_scale_shift_norm=use_scale_shift_norm,
                                down=True,
                            )
                        )
                        if resblock_updown
                        else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        if legacy:
            # num_heads = 1
            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
        self.middle_block = TimestepEmbedSequential(
            checkpoint_wrapper_fn(
                ResBlock(
                    ch,
                    time_embed_dim,
                    dropout,
                    dims=dims,
                    use_checkpoint=use_checkpoint,
                    use_scale_shift_norm=use_scale_shift_norm,
                )
            ),
            checkpoint_wrapper_fn(
                AttentionBlock(
                    ch,
                    use_checkpoint=use_checkpoint,
                    num_heads=num_heads,
                    num_head_channels=dim_head,
                    use_new_attention_order=use_new_attention_order,
                )
            )
            if not use_spatial_transformer
            else checkpoint_wrapper_fn(
                SpatialTransformer(  # always uses a self-attn
                    ch,
                    num_heads,
                    dim_head,
                    depth=transformer_depth_middle,
                    context_dim=context_dim,
                    disable_self_attn=disable_middle_self_attn,
                    use_linear=use_linear_in_transformer,
                    attn_type=spatial_transformer_attn_type,
                    use_checkpoint=use_checkpoint,
                )
            ),
            checkpoint_wrapper_fn(
                ResBlock(
                    ch,
                    time_embed_dim,
                    dropout,
                    dims=dims,
                    use_checkpoint=use_checkpoint,
                    use_scale_shift_norm=use_scale_shift_norm,
                )
            ),
        )
        self._feature_size += ch

        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(self.num_res_blocks[level] + 1):
                ich = input_block_chans.pop()
                layers = [
                    checkpoint_wrapper_fn(
                        ResBlock(
                            ch + ich,
                            time_embed_dim,
                            dropout,
                            out_channels=model_channels * mult,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                        )
                    )
                ]
                ch = model_channels * mult
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        # num_heads = 1
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
                        layers.append(
                            checkpoint_wrapper_fn(
                                AttentionBlock(
                                    ch,
                                    use_checkpoint=use_checkpoint,
                                    num_heads=num_heads_upsample,
                                    num_head_channels=dim_head,
                                    use_new_attention_order=use_new_attention_order,
                                )
                            )
                            if not use_spatial_transformer
                            else checkpoint_wrapper_fn(
                                SpatialTransformer(
                                    ch,
                                    num_heads,
                                    dim_head,
                                    depth=transformer_depth[level],
                                    context_dim=context_dim,
                                    disable_self_attn=disabled_sa,
                                    use_linear=use_linear_in_transformer,
                                    attn_type=spatial_transformer_attn_type,
                                    use_checkpoint=use_checkpoint,
                                )
                            )
                        )
                if level and i == self.num_res_blocks[level]:
                    out_ch = ch
                    layers.append(
                        checkpoint_wrapper_fn(
                            ResBlock(
                                ch,
                                time_embed_dim,
                                dropout,
                                out_channels=out_ch,
                                dims=dims,
                                use_checkpoint=use_checkpoint,
                                use_scale_shift_norm=use_scale_shift_norm,
                                up=True,
                            )
                        )
                        if resblock_updown
                        else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
                    )
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch

        self.out = checkpoint_wrapper_fn(
            nn.Sequential(
                normalization(ch),
                nn.SiLU(),
                zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
            )
        )
        if self.predict_codebook_ids:
            self.id_predictor = checkpoint_wrapper_fn(
                nn.Sequential(
                    normalization(ch),
                    conv_nd(dims, model_channels, n_embed, 1),
                    # nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
                )
            )

        if lora_init:
            self._init_lora(lora_rank, lora_scale, lora_weight_path)

    def _init_lora(self, rank, scale, ckpt_dir=None):
        inject_trainable_lora_extended(self, target_replace_module=None, rank=rank, scale=scale)

        if ckpt_dir is not None:
            with open(os.path.join(ckpt_dir, "latest")) as latest_file:
                latest = latest_file.read().strip()
            ckpt_path = os.path.join(ckpt_dir, latest, "mp_rank_00_model_states.pt")
            print(f"loading lora from {ckpt_path}")
            sd = th.load(ckpt_path)["module"]
            sd = {
                key[len("model.diffusion_model") :]: sd[key] for key in sd if key.startswith("model.diffusion_model")
            }
            self.load_state_dict(sd, strict=False)

    def _update_scale(self, scale):
        update_lora_scale(self, scale)

    def convert_to_fp16(self):
        """
        Convert the torso of the model to float16.
        """
        self.input_blocks.apply(convert_module_to_f16)
        self.middle_block.apply(convert_module_to_f16)
        self.output_blocks.apply(convert_module_to_f16)

    def convert_to_fp32(self):
        """
        Convert the torso of the model to float32.
        """
        self.input_blocks.apply(convert_module_to_f32)
        self.middle_block.apply(convert_module_to_f32)
        self.output_blocks.apply(convert_module_to_f32)

    def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
        """
        Apply the model to an input batch.
        :param x: an [N x C x ...] Tensor of inputs.
        :param timesteps: a 1-D batch of timesteps.
        :param context: conditioning plugged in via crossattn
        :param y: an [N] Tensor of labels, if class-conditional.
        :return: an [N x C x ...] Tensor of outputs.
        """
        assert (y is not None) == (
            self.num_classes is not None
        ), "must specify y if and only if the model is class-conditional"
        hs = []
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False, dtype=self.dtype)
        emb = self.time_embed(t_emb)

        if self.num_classes is not None:
            assert y.shape[0] == x.shape[0]
            emb = emb + self.label_emb(y)

        # h = x.type(self.dtype)
        h = x
        for module in self.input_blocks:
            h = module(h, emb, context)
            hs.append(h)
        h = self.middle_block(h, emb, context)
        for module in self.output_blocks:
            h = th.cat([h, hs.pop()], dim=1)
            h = module(h, emb, context)
        h = h.type(x.dtype)
        if self.predict_codebook_ids:
            assert False, "not supported anymore. what the f*** are you doing?"
        else:
            return self.out(h)


class NoTimeUNetModel(UNetModel):
    def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
        timesteps = th.zeros_like(timesteps)
        return super().forward(x, timesteps, context, y, **kwargs)


class EncoderUNetModel(nn.Module):
    """
    The half UNet model with attention and timestep embedding.
    For usage, see UNet.
    """

    def __init__(
        self,
        image_size,
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        attention_resolutions,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        use_checkpoint=False,
        use_fp16=False,
        num_heads=1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        use_new_attention_order=False,
        pool="adaptive",
        *args,
        **kwargs,
    ):
        super().__init__()

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.use_checkpoint = use_checkpoint
        self.dtype = th.float16 if use_fp16 else th.float32
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            nn.SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        self.input_blocks = nn.ModuleList(
            [TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))]
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads,
                            num_head_channels=num_head_channels,
                            use_new_attention_order=use_new_attention_order,
                        )
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
                        )
                        if resblock_updown
                        else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        self.middle_block = TimestepEmbedSequential(
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
            AttentionBlock(
                ch,
                use_checkpoint=use_checkpoint,
                num_heads=num_heads,
                num_head_channels=num_head_channels,
                use_new_attention_order=use_new_attention_order,
            ),
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
        )
        self._feature_size += ch
        self.pool = pool
        if pool == "adaptive":
            self.out = nn.Sequential(
                normalization(ch),
                nn.SiLU(),
                nn.AdaptiveAvgPool2d((1, 1)),
                zero_module(conv_nd(dims, ch, out_channels, 1)),
                nn.Flatten(),
            )
        elif pool == "attention":
            assert num_head_channels != -1
            self.out = nn.Sequential(
                normalization(ch),
                nn.SiLU(),
                AttentionPool2d((image_size // ds), ch, num_head_channels, out_channels),
            )
        elif pool == "spatial":
            self.out = nn.Sequential(
                nn.Linear(self._feature_size, 2048),
                nn.ReLU(),
                nn.Linear(2048, self.out_channels),
            )
        elif pool == "spatial_v2":
            self.out = nn.Sequential(
                nn.Linear(self._feature_size, 2048),
                normalization(2048),
                nn.SiLU(),
                nn.Linear(2048, self.out_channels),
            )
        else:
            raise NotImplementedError(f"Unexpected {pool} pooling")

    def convert_to_fp16(self):
        """
        Convert the torso of the model to float16.
        """
        self.input_blocks.apply(convert_module_to_f16)
        self.middle_block.apply(convert_module_to_f16)

    def convert_to_fp32(self):
        """
        Convert the torso of the model to float32.
        """
        self.input_blocks.apply(convert_module_to_f32)
        self.middle_block.apply(convert_module_to_f32)

    def forward(self, x, timesteps):
        """
        Apply the model to an input batch.
        :param x: an [N x C x ...] Tensor of inputs.
        :param timesteps: a 1-D batch of timesteps.
        :return: an [N x K] Tensor of outputs.
        """
        emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))

        results = []
        # h = x.type(self.dtype)
        h = x
        for module in self.input_blocks:
            h = module(h, emb)
            if self.pool.startswith("spatial"):
                results.append(h.type(x.dtype).mean(dim=(2, 3)))
        h = self.middle_block(h, emb)
        if self.pool.startswith("spatial"):
            results.append(h.type(x.dtype).mean(dim=(2, 3)))
            h = th.cat(results, axis=-1)
            return self.out(h)
        else:
            h = h.type(x.dtype)
            return self.out(h)


if __name__ == "__main__":

    class Dummy(nn.Module):
        def __init__(self, in_channels=3, model_channels=64):
            super().__init__()
            self.input_blocks = nn.ModuleList(
                [TimestepEmbedSequential(conv_nd(2, in_channels, model_channels, 3, padding=1))]
            )

    model = UNetModel(
        use_checkpoint=True,
        image_size=64,
        in_channels=4,
        out_channels=4,
        model_channels=128,
        attention_resolutions=[4, 2],
        num_res_blocks=2,
        channel_mult=[1, 2, 4],
        num_head_channels=64,
        use_spatial_transformer=False,
        use_linear_in_transformer=True,
        transformer_depth=1,
        legacy=False,
    ).cuda()
    x = th.randn(11, 4, 64, 64).cuda()
    t = th.randint(low=0, high=10, size=(11,), device="cuda")
    o = model(x, t)
    print("done.")
