sat/utils/misc.py (281 lines of code) (raw):
import collections
import importlib
import logging
import os
import time
from collections import OrderedDict
from collections.abc import Sequence
from itertools import repeat
from typing import Tuple
import imageio
import numpy as np
import torch
import torch.distributed as dist
import torchvision.transforms.v2 as tr
from torchvision.transforms import InterpolationMode
# ======================================================
# Logging
# ======================================================
def is_distributed():
return os.environ.get("WORLD_SIZE", None) is not None
def is_main_process():
return not is_distributed() or dist.get_rank() == 0
def get_world_size():
if is_distributed():
return dist.get_world_size()
else:
return 1
def create_logger(logging_dir=None):
"""
Create a logger that writes to a log file and stdout.
"""
if is_main_process(): # real logger
additional_args = dict()
if logging_dir is not None:
additional_args["handlers"] = [
logging.StreamHandler(),
logging.FileHandler(f"{logging_dir}/log.txt"),
]
logging.basicConfig(
level=logging.INFO,
format="[\033[34m%(asctime)s\033[0m] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
**additional_args,
)
logger = logging.getLogger(__name__)
else: # dummy logger (does nothing)
logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())
return logger
def get_logger():
return logging.getLogger(__name__)
def print_rank(var_name, var_value, rank=0):
if dist.get_rank() == rank:
print(f"[Rank {rank}] {var_name}: {var_value}")
def print_0(*args, **kwargs):
if dist.get_rank() == 0:
print(*args, **kwargs)
def create_tensorboard_writer(exp_dir):
from torch.utils.tensorboard import SummaryWriter
tensorboard_dir = f"{exp_dir}/tensorboard"
os.makedirs(tensorboard_dir, exist_ok=True)
writer = SummaryWriter(tensorboard_dir)
return writer
# ======================================================
# String
# ======================================================
def format_numel_str(numel: int) -> str:
B = 1024**3
M = 1024**2
K = 1024
if numel >= B:
return f"{numel / B:.2f} B"
elif numel >= M:
return f"{numel / M:.2f} M"
elif numel >= K:
return f"{numel / K:.2f} K"
else:
return f"{numel}"
def get_timestamp():
timestamp = time.strftime("%Y%m%d-%H%M%S", time.localtime(time.time()))
return timestamp
def format_time(seconds):
days = int(seconds / 3600 / 24)
seconds = seconds - days * 3600 * 24
hours = int(seconds / 3600)
seconds = seconds - hours * 3600
minutes = int(seconds / 60)
seconds = seconds - minutes * 60
secondsf = int(seconds)
seconds = seconds - secondsf
millis = int(seconds * 1000)
f = ""
i = 1
if days > 0:
f += str(days) + "D"
i += 1
if hours > 0 and i <= 2:
f += str(hours) + "h"
i += 1
if minutes > 0 and i <= 2:
f += str(minutes) + "m"
i += 1
if secondsf > 0 and i <= 2:
f += str(secondsf) + "s"
i += 1
if millis > 0 and i <= 2:
f += str(millis) + "ms"
i += 1
if f == "":
f = "0ms"
return f
class BColors:
HEADER = "\033[95m"
OKBLUE = "\033[94m"
OKCYAN = "\033[96m"
OKGREEN = "\033[92m"
WARNING = "\033[93m"
FAIL = "\033[91m"
ENDC = "\033[0m"
BOLD = "\033[1m"
UNDERLINE = "\033[4m"
# ======================================================
# PyTorch
# ======================================================
def vis_tensor(x, h, w, output_dir, min_=None, max_=None):
"""
Args:
x (torch.Tensor): of shape [T, C, H, W]
"""
x = x.mean(dim=1)
if min_ is None:
min_ = x.min()
if max_ is None:
max_ = x.max()
x = (x - min_) / (max_ - min_)
x = x.clamp(0, 1)
x = tr.Resize([h, w], interpolation=InterpolationMode.NEAREST)(x)
x = (x * 255).to(torch.uint8).cpu().numpy()
x = [xx for xx in x]
imageio.mimwrite(output_dir, x, fps=8, loop=0)
def requires_grad(model: torch.nn.Module, flag: bool = True) -> None:
"""
Set requires_grad flag for all parameters in a model.
"""
for p in model.parameters():
p.requires_grad = flag
def all_reduce_mean(tensor: torch.Tensor) -> torch.Tensor:
dist.all_reduce(tensor=tensor, op=dist.ReduceOp.SUM)
tensor.div_(dist.get_world_size())
return tensor
def get_model_numel(model: torch.nn.Module) -> Tuple[int, int]:
num_params = 0
num_params_trainable = 0
for p in model.parameters():
num_params += p.numel()
if p.requires_grad:
num_params_trainable += p.numel()
return num_params, num_params_trainable
def count_params(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def to_tensor(data):
"""Convert objects of various python types to :obj:`torch.Tensor`.
Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
:class:`Sequence`, :class:`int` and :class:`float`.
Args:
data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to
be converted.
"""
if isinstance(data, torch.Tensor):
return data
elif isinstance(data, np.ndarray):
return torch.from_numpy(data)
elif isinstance(data, Sequence) and not isinstance(data, str):
return torch.tensor(data)
elif isinstance(data, int):
return torch.LongTensor([data])
elif isinstance(data, float):
return torch.FloatTensor([data])
else:
raise TypeError(f"type {type(data)} cannot be converted to tensor.")
def to_ndarray(data):
if isinstance(data, torch.Tensor):
return data.numpy()
elif isinstance(data, np.ndarray):
return data
elif isinstance(data, Sequence):
return np.array(data)
elif isinstance(data, int):
return np.ndarray([data], dtype=int)
elif isinstance(data, float):
return np.array([data], dtype=float)
else:
raise TypeError(f"type {type(data)} cannot be converted to ndarray.")
def to_torch_dtype(dtype):
if isinstance(dtype, torch.dtype):
return dtype
elif isinstance(dtype, str):
dtype_mapping = {
"float64": torch.float64,
"float32": torch.float32,
"float16": torch.float16,
"fp32": torch.float32,
"fp16": torch.float16,
"half": torch.float16,
"bf16": torch.bfloat16,
}
if dtype not in dtype_mapping:
raise ValueError
dtype = dtype_mapping[dtype]
return dtype
else:
raise ValueError
def _ntuple(n):
def parse(x):
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
return x
return tuple(repeat(x, n))
return parse
to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = _ntuple
def convert_SyncBN_to_BN2d(model_cfg):
for k in model_cfg:
v = model_cfg[k]
if k == "norm_cfg" and v["type"] == "SyncBN":
v["type"] = "BN2d"
elif isinstance(v, dict):
convert_SyncBN_to_BN2d(v)
def get_topk(x, dim=4, k=5):
x = to_tensor(x)
inds = x[..., dim].topk(k)[1]
return x[inds]
def param_sigmoid(x, alpha):
ret = 1 / (1 + (-alpha * x).exp())
return ret
def inverse_param_sigmoid(x, alpha, eps=1e-5):
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1 / x2) / alpha
def inverse_sigmoid(x, eps=1e-5):
"""Inverse function of sigmoid.
Args:
x (Tensor): The tensor to do the
inverse.
eps (float): EPS avoid numerical
overflow. Defaults 1e-5.
Returns:
Tensor: The x has passed the inverse
function of sigmoid, has same
shape with input.
"""
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1 / x2)
# ======================================================
# Python
# ======================================================
def count_columns(df, columns):
cnt_dict = OrderedDict()
num_samples = len(df)
for col in columns:
d_i = df[col].value_counts().to_dict()
for k in d_i:
d_i[k] = (d_i[k], d_i[k] / num_samples)
cnt_dict[col] = d_i
return cnt_dict
def try_import(name):
"""Try to import a module.
Args:
name (str): Specifies what module to import in absolute or relative
terms (e.g. either pkg.mod or ..mod).
Returns:
ModuleType or None: If importing successfully, returns the imported
module, otherwise returns None.
"""
try:
return importlib.import_module(name)
except ImportError:
return None
def transpose(x):
"""
transpose a list of list
Args:
x (list[list]):
"""
ret = list(map(list, zip(*x)))
return ret
def all_exists(paths):
return all(os.path.exists(path) for path in paths)
# ======================================================
# Profile
# ======================================================
class Timer:
def __init__(self, name, log=False):
self.name = name
self.start_time = None
self.end_time = None
self.log = log
@property
def elapsed_time(self):
return self.end_time - self.start_time
def __enter__(self):
torch.cuda.synchronize()
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
torch.cuda.synchronize()
self.end_time = time.time()
if self.log:
print(f"Elapsed time for {self.name}: {self.elapsed_time:.2f} s")
def get_tensor_memory(tensor, human_readable=True):
size = tensor.element_size() * tensor.nelement()
if human_readable:
size = format_numel_str(size)
return size
class FeatureSaver:
def __init__(self, save_dir, bin_size=10, start_bin=0):
self.save_dir = save_dir
self.bin_size = bin_size
self.bin_cnt = start_bin
self.data_list = []
self.cnt = 0
def update(self, data):
self.data_list.append(data)
self.cnt += 1
if self.cnt % self.bin_size == 0:
self.save()
def save(self):
save_path = os.path.join(self.save_dir, f"{self.bin_cnt:08}.bin")
torch.save(self.data_list, save_path)
get_logger().info("Saved to %s", save_path)
self.data_list = []
self.bin_cnt += 1