in tzrec/utils/state_dict_util.py [0:0]
def init_parameters(module: nn.Module, device: torch.device) -> None:
"""Init param for model with meta device type."""
@torch.no_grad()
def init_parameters(module: nn.Module) -> None:
# Allocate parameters and buffers if over 'meta' device.
has_meta_param = False
for name, param in module._parameters.items():
if isinstance(param, torch.Tensor) and param.device.type == "meta":
module._parameters[name] = nn.Parameter(
torch.empty_like(param, device=device),
requires_grad=param.requires_grad,
)
has_meta_param = True
for name, buffer in module._buffers.items():
if isinstance(buffer, torch.Tensor) and buffer.device.type == "meta":
module._buffers[name] = torch.zeros_like(buffer, device=device)
# Init parameters if at least one parameter is over 'meta' device.
if has_meta_param and hasattr(module, "reset_parameters"):
module.reset_parameters()
module.apply(init_parameters)