tzrec/features/id_feature.py (146 lines of code) (raw):

# Copyright (c) 2024, Alibaba Group; # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Optional, Tuple import pyarrow as pa from tzrec.datasets.utils import ( ParsedData, SparseData, ) from tzrec.features.feature import ( MAX_HASH_BUCKET_SIZE, BaseFeature, FgMode, _parse_fg_encoded_sparse_feature_impl, ) from tzrec.protos import feature_pb2 from tzrec.protos.feature_pb2 import FeatureConfig class IdFeature(BaseFeature): """IdFeature class. Args: feature_config (FeatureConfig): a instance of feature config. fg_mode (FgMode): input data fg mode. fg_encoded_multival_sep (str, optional): multival_sep when fg_mode=FG_NONE """ def __init__( self, feature_config: FeatureConfig, fg_mode: FgMode = FgMode.FG_NONE, fg_encoded_multival_sep: Optional[str] = None, ) -> None: super().__init__(feature_config, fg_mode, fg_encoded_multival_sep) if isinstance(self.config, feature_pb2.IdFeature) and self.config.HasField( "weighted" ): self._is_weighted = self.config.weighted @property def name(self) -> str: """Feature name.""" return self.config.feature_name @property def value_dim(self) -> int: """Fg value dimension of the feature.""" if self.config.HasField("value_dim"): return self.config.value_dim else: return 0 @property def output_dim(self) -> int: """Output dimension of the feature after embedding.""" return self.config.embedding_dim @property def is_sparse(self) -> bool: """Feature is sparse or dense.""" if self._is_sparse is None: self._is_sparse = True return self._is_sparse @property def num_embeddings(self) -> int: """Get embedding row count.""" if self.config.HasField("zch"): num_embeddings = self.config.zch.zch_size elif self.config.HasField("hash_bucket_size"): num_embeddings = self.config.hash_bucket_size elif self.config.HasField("num_buckets"): num_embeddings = self.config.num_buckets elif len(self.vocab_list) > 0: num_embeddings = len(self.vocab_list) elif len(self.vocab_dict) > 0: num_embeddings = max(list(self.vocab_dict.values())) + 1 elif len(self.vocab_file) > 0: self.init_fg() num_embeddings = self._fg_op.vocab_list_size() else: raise ValueError( f"{self.__class__.__name__}[{self.name}] must set hash_bucket_size" " or num_buckets or vocab_list or vocab_dict or zch.zch_size" ) return num_embeddings @property def inputs(self) -> List[str]: """Input field names.""" if not self._inputs: if self.fg_mode == FgMode.FG_NONE: self._inputs = [self.name] else: self._inputs = [v for _, v in self.side_inputs] return self._inputs def _build_side_inputs(self) -> Optional[List[Tuple[str, str]]]: """Input field names with side.""" if self.config.HasField("expression"): return [tuple(self.config.expression.split(":"))] else: return None def _parse(self, input_data: Dict[str, pa.Array]) -> ParsedData: """Parse input data for the feature impl. Args: input_data (dict): raw input feature data. Return: parsed feature data. """ if self.fg_mode == FgMode.FG_NONE: feat = input_data[self.inputs[0]] parsed_feat = _parse_fg_encoded_sparse_feature_impl( self.name, feat, is_weighted=self._is_weighted, **self._fg_encoded_kwargs, ) elif self.fg_mode == FgMode.FG_NORMAL: input_feat = input_data[self.inputs[0]] if pa.types.is_list(input_feat.type): input_feat = input_feat.fill_null([]) input_feat = input_feat.tolist() if self._is_weighted: values, lengths, weights = self._fg_op.to_weighted_jagged_tensor( input_feat ) else: values, lengths = self._fg_op.to_bucketized_jagged_tensor(input_feat) weights = None parsed_feat = SparseData( name=self.name, values=values, lengths=lengths, weights=weights ) else: raise ValueError( f"fg_mode: {self.fg_mode} is not supported without fg handler." ) return parsed_feat def fg_json(self) -> List[Dict[str, Any]]: """Get fg json config.""" fg_cfg = { "feature_type": "id_feature", "feature_name": self.name, "default_value": self.config.default_value, "expression": self.config.expression, "value_type": "string", "need_prefix": False, } if self.config.separator != "\x1d": fg_cfg["separator"] = self.config.separator if self.config.HasField("zch"): fg_cfg["hash_bucket_size"] = MAX_HASH_BUCKET_SIZE elif self.config.HasField("hash_bucket_size"): fg_cfg["hash_bucket_size"] = self.config.hash_bucket_size elif len(self.vocab_list) > 0: fg_cfg["vocab_list"] = self.vocab_list fg_cfg["default_bucketize_value"] = self.default_bucketize_value elif len(self.vocab_dict) > 0: fg_cfg["vocab_dict"] = self.vocab_dict fg_cfg["default_bucketize_value"] = self.default_bucketize_value elif len(self.vocab_file) > 0: fg_cfg["vocab_file"] = self.vocab_file fg_cfg["default_bucketize_value"] = self.default_bucketize_value elif self.config.HasField("num_buckets"): fg_cfg["num_buckets"] = self.config.num_buckets if self.config.weighted: fg_cfg["weighted"] = True if self.config.HasField("value_dim"): fg_cfg["value_dim"] = self.config.value_dim else: fg_cfg["value_dim"] = 0 if self.config.HasField("fg_value_type"): fg_cfg["value_type"] = self.config.fg_value_type return [fg_cfg] def assets(self) -> Dict[str, str]: """Asset file paths.""" assets = {} if len(self.vocab_file) > 0: assets["vocab_file"] = self.vocab_file return assets