tzrec/features/id_feature.py (146 lines of code) (raw):
# Copyright (c) 2024, Alibaba Group;
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Tuple
import pyarrow as pa
from tzrec.datasets.utils import (
ParsedData,
SparseData,
)
from tzrec.features.feature import (
MAX_HASH_BUCKET_SIZE,
BaseFeature,
FgMode,
_parse_fg_encoded_sparse_feature_impl,
)
from tzrec.protos import feature_pb2
from tzrec.protos.feature_pb2 import FeatureConfig
class IdFeature(BaseFeature):
"""IdFeature class.
Args:
feature_config (FeatureConfig): a instance of feature config.
fg_mode (FgMode): input data fg mode.
fg_encoded_multival_sep (str, optional): multival_sep when fg_mode=FG_NONE
"""
def __init__(
self,
feature_config: FeatureConfig,
fg_mode: FgMode = FgMode.FG_NONE,
fg_encoded_multival_sep: Optional[str] = None,
) -> None:
super().__init__(feature_config, fg_mode, fg_encoded_multival_sep)
if isinstance(self.config, feature_pb2.IdFeature) and self.config.HasField(
"weighted"
):
self._is_weighted = self.config.weighted
@property
def name(self) -> str:
"""Feature name."""
return self.config.feature_name
@property
def value_dim(self) -> int:
"""Fg value dimension of the feature."""
if self.config.HasField("value_dim"):
return self.config.value_dim
else:
return 0
@property
def output_dim(self) -> int:
"""Output dimension of the feature after embedding."""
return self.config.embedding_dim
@property
def is_sparse(self) -> bool:
"""Feature is sparse or dense."""
if self._is_sparse is None:
self._is_sparse = True
return self._is_sparse
@property
def num_embeddings(self) -> int:
"""Get embedding row count."""
if self.config.HasField("zch"):
num_embeddings = self.config.zch.zch_size
elif self.config.HasField("hash_bucket_size"):
num_embeddings = self.config.hash_bucket_size
elif self.config.HasField("num_buckets"):
num_embeddings = self.config.num_buckets
elif len(self.vocab_list) > 0:
num_embeddings = len(self.vocab_list)
elif len(self.vocab_dict) > 0:
num_embeddings = max(list(self.vocab_dict.values())) + 1
elif len(self.vocab_file) > 0:
self.init_fg()
num_embeddings = self._fg_op.vocab_list_size()
else:
raise ValueError(
f"{self.__class__.__name__}[{self.name}] must set hash_bucket_size"
" or num_buckets or vocab_list or vocab_dict or zch.zch_size"
)
return num_embeddings
@property
def inputs(self) -> List[str]:
"""Input field names."""
if not self._inputs:
if self.fg_mode == FgMode.FG_NONE:
self._inputs = [self.name]
else:
self._inputs = [v for _, v in self.side_inputs]
return self._inputs
def _build_side_inputs(self) -> Optional[List[Tuple[str, str]]]:
"""Input field names with side."""
if self.config.HasField("expression"):
return [tuple(self.config.expression.split(":"))]
else:
return None
def _parse(self, input_data: Dict[str, pa.Array]) -> ParsedData:
"""Parse input data for the feature impl.
Args:
input_data (dict): raw input feature data.
Return:
parsed feature data.
"""
if self.fg_mode == FgMode.FG_NONE:
feat = input_data[self.inputs[0]]
parsed_feat = _parse_fg_encoded_sparse_feature_impl(
self.name,
feat,
is_weighted=self._is_weighted,
**self._fg_encoded_kwargs,
)
elif self.fg_mode == FgMode.FG_NORMAL:
input_feat = input_data[self.inputs[0]]
if pa.types.is_list(input_feat.type):
input_feat = input_feat.fill_null([])
input_feat = input_feat.tolist()
if self._is_weighted:
values, lengths, weights = self._fg_op.to_weighted_jagged_tensor(
input_feat
)
else:
values, lengths = self._fg_op.to_bucketized_jagged_tensor(input_feat)
weights = None
parsed_feat = SparseData(
name=self.name, values=values, lengths=lengths, weights=weights
)
else:
raise ValueError(
f"fg_mode: {self.fg_mode} is not supported without fg handler."
)
return parsed_feat
def fg_json(self) -> List[Dict[str, Any]]:
"""Get fg json config."""
fg_cfg = {
"feature_type": "id_feature",
"feature_name": self.name,
"default_value": self.config.default_value,
"expression": self.config.expression,
"value_type": "string",
"need_prefix": False,
}
if self.config.separator != "\x1d":
fg_cfg["separator"] = self.config.separator
if self.config.HasField("zch"):
fg_cfg["hash_bucket_size"] = MAX_HASH_BUCKET_SIZE
elif self.config.HasField("hash_bucket_size"):
fg_cfg["hash_bucket_size"] = self.config.hash_bucket_size
elif len(self.vocab_list) > 0:
fg_cfg["vocab_list"] = self.vocab_list
fg_cfg["default_bucketize_value"] = self.default_bucketize_value
elif len(self.vocab_dict) > 0:
fg_cfg["vocab_dict"] = self.vocab_dict
fg_cfg["default_bucketize_value"] = self.default_bucketize_value
elif len(self.vocab_file) > 0:
fg_cfg["vocab_file"] = self.vocab_file
fg_cfg["default_bucketize_value"] = self.default_bucketize_value
elif self.config.HasField("num_buckets"):
fg_cfg["num_buckets"] = self.config.num_buckets
if self.config.weighted:
fg_cfg["weighted"] = True
if self.config.HasField("value_dim"):
fg_cfg["value_dim"] = self.config.value_dim
else:
fg_cfg["value_dim"] = 0
if self.config.HasField("fg_value_type"):
fg_cfg["value_type"] = self.config.fg_value_type
return [fg_cfg]
def assets(self) -> Dict[str, str]:
"""Asset file paths."""
assets = {}
if len(self.vocab_file) > 0:
assets["vocab_file"] = self.vocab_file
return assets