tzrec/features/raw_feature.py (97 lines of code) (raw):

# Copyright (c) 2024, Alibaba Group; # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Optional, Tuple import pyarrow as pa from tzrec.datasets.utils import ( DenseData, ParsedData, SparseData, ) from tzrec.features.feature import ( BaseFeature, FgMode, _parse_fg_encoded_dense_feature_impl, _parse_fg_encoded_sparse_feature_impl, ) from tzrec.protos.feature_pb2 import FeatureConfig class RawFeature(BaseFeature): """RawFeature class. Args: feature_config (FeatureConfig): a instance of feature config. fg_mode (FgMode): input data fg mode. fg_encoded_multival_sep (str, optional): multival_sep when fg_mode=FG_NONE """ def __init__( self, feature_config: FeatureConfig, fg_mode: FgMode = FgMode.FG_NONE, fg_encoded_multival_sep: Optional[str] = None, ) -> None: super().__init__(feature_config, fg_mode, fg_encoded_multival_sep) @property def name(self) -> str: """Feature name.""" return self.config.feature_name @property def value_dim(self) -> int: """Fg value dimension of the feature.""" if self.config.HasField("value_dim"): return self.config.value_dim else: return 1 @property def output_dim(self) -> int: """Output dimension of the feature after embedding.""" if self.has_embedding: return self.config.embedding_dim else: return self.config.value_dim @property def is_sparse(self) -> bool: """Feature is sparse or dense.""" if self._is_sparse is None: self._is_sparse = len(self.config.boundaries) > 0 return self._is_sparse @property def num_embeddings(self) -> int: """Get embedding row count.""" return len(self.config.boundaries) + 1 @property def _dense_emb_type(self) -> Optional[str]: return self.config.WhichOneof("dense_emb") def _build_side_inputs(self) -> Optional[List[Tuple[str, str]]]: """Input field names with side.""" if self.config.HasField("expression"): return [tuple(self.config.expression.split(":"))] else: return None def _parse(self, input_data: Dict[str, pa.Array]) -> ParsedData: """Parse input data for the feature impl. Args: input_data (dict): raw input feature data. Return: parsed feature data. """ if self.fg_mode == FgMode.FG_NONE: feat = input_data[self.name] if self.is_sparse: parsed_feat = _parse_fg_encoded_sparse_feature_impl( self.name, feat, **self._fg_encoded_kwargs ) else: parsed_feat = _parse_fg_encoded_dense_feature_impl( self.name, feat, **self._fg_encoded_kwargs ) elif self.fg_mode == FgMode.FG_NORMAL: input_feat = input_data[self.inputs[0]] if pa.types.is_list(input_feat.type): input_feat = input_feat.fill_null([]) input_feat = input_feat.tolist() if self._fg_op.is_sparse: values, lengths = self._fg_op.to_bucketized_jagged_tensor(input_feat) parsed_feat = SparseData(name=self.name, values=values, lengths=lengths) else: values = self._fg_op.transform(input_feat) parsed_feat = DenseData(name=self.name, values=values) else: raise ValueError( f"fg_mode: {self.fg_mode} is not supported without fg handler." ) return parsed_feat def fg_json(self) -> List[Dict[str, Any]]: """Get fg json config.""" fg_cfg = { "feature_type": "raw_feature", "feature_name": self.name, "default_value": self.config.default_value, "expression": self.config.expression, "value_type": "float", } if self.config.value_dim > 1: if self.config.separator != "\x1d": fg_cfg["separator"] = self.config.separator fg_cfg["value_dim"] = self.config.value_dim if self.config.normalizer != "": fg_cfg["normalizer"] = self.config.normalizer if len(self.config.boundaries) > 0: fg_cfg["boundaries"] = list(self.config.boundaries) return [fg_cfg]