tzrec/features/raw_feature.py (97 lines of code) (raw):
# Copyright (c) 2024, Alibaba Group;
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Tuple
import pyarrow as pa
from tzrec.datasets.utils import (
DenseData,
ParsedData,
SparseData,
)
from tzrec.features.feature import (
BaseFeature,
FgMode,
_parse_fg_encoded_dense_feature_impl,
_parse_fg_encoded_sparse_feature_impl,
)
from tzrec.protos.feature_pb2 import FeatureConfig
class RawFeature(BaseFeature):
"""RawFeature class.
Args:
feature_config (FeatureConfig): a instance of feature config.
fg_mode (FgMode): input data fg mode.
fg_encoded_multival_sep (str, optional): multival_sep when fg_mode=FG_NONE
"""
def __init__(
self,
feature_config: FeatureConfig,
fg_mode: FgMode = FgMode.FG_NONE,
fg_encoded_multival_sep: Optional[str] = None,
) -> None:
super().__init__(feature_config, fg_mode, fg_encoded_multival_sep)
@property
def name(self) -> str:
"""Feature name."""
return self.config.feature_name
@property
def value_dim(self) -> int:
"""Fg value dimension of the feature."""
if self.config.HasField("value_dim"):
return self.config.value_dim
else:
return 1
@property
def output_dim(self) -> int:
"""Output dimension of the feature after embedding."""
if self.has_embedding:
return self.config.embedding_dim
else:
return self.config.value_dim
@property
def is_sparse(self) -> bool:
"""Feature is sparse or dense."""
if self._is_sparse is None:
self._is_sparse = len(self.config.boundaries) > 0
return self._is_sparse
@property
def num_embeddings(self) -> int:
"""Get embedding row count."""
return len(self.config.boundaries) + 1
@property
def _dense_emb_type(self) -> Optional[str]:
return self.config.WhichOneof("dense_emb")
def _build_side_inputs(self) -> Optional[List[Tuple[str, str]]]:
"""Input field names with side."""
if self.config.HasField("expression"):
return [tuple(self.config.expression.split(":"))]
else:
return None
def _parse(self, input_data: Dict[str, pa.Array]) -> ParsedData:
"""Parse input data for the feature impl.
Args:
input_data (dict): raw input feature data.
Return:
parsed feature data.
"""
if self.fg_mode == FgMode.FG_NONE:
feat = input_data[self.name]
if self.is_sparse:
parsed_feat = _parse_fg_encoded_sparse_feature_impl(
self.name, feat, **self._fg_encoded_kwargs
)
else:
parsed_feat = _parse_fg_encoded_dense_feature_impl(
self.name, feat, **self._fg_encoded_kwargs
)
elif self.fg_mode == FgMode.FG_NORMAL:
input_feat = input_data[self.inputs[0]]
if pa.types.is_list(input_feat.type):
input_feat = input_feat.fill_null([])
input_feat = input_feat.tolist()
if self._fg_op.is_sparse:
values, lengths = self._fg_op.to_bucketized_jagged_tensor(input_feat)
parsed_feat = SparseData(name=self.name, values=values, lengths=lengths)
else:
values = self._fg_op.transform(input_feat)
parsed_feat = DenseData(name=self.name, values=values)
else:
raise ValueError(
f"fg_mode: {self.fg_mode} is not supported without fg handler."
)
return parsed_feat
def fg_json(self) -> List[Dict[str, Any]]:
"""Get fg json config."""
fg_cfg = {
"feature_type": "raw_feature",
"feature_name": self.name,
"default_value": self.config.default_value,
"expression": self.config.expression,
"value_type": "float",
}
if self.config.value_dim > 1:
if self.config.separator != "\x1d":
fg_cfg["separator"] = self.config.separator
fg_cfg["value_dim"] = self.config.value_dim
if self.config.normalizer != "":
fg_cfg["normalizer"] = self.config.normalizer
if len(self.config.boundaries) > 0:
fg_cfg["boundaries"] = list(self.config.boundaries)
return [fg_cfg]