tzrec/models/dc2vr.py (121 lines of code) (raw):
# Copyright (c) 2024, Alibaba Group;
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List
import torch
from torch import nn
from tzrec.datasets.utils import Batch
from tzrec.features.feature import BaseFeature
from tzrec.models.multi_task_rank import MultiTaskRank
from tzrec.modules.intervention import Intervention
from tzrec.modules.mlp import MLP
from tzrec.modules.mmoe import MMoE as MMoEModule
from tzrec.protos.model_pb2 import ModelConfig
from tzrec.protos.models import multi_task_rank_pb2
from tzrec.utils.config_util import config_to_kwargs
class DC2VR(MultiTaskRank):
"""DeCoudounding Conversion Rate.
Args:
model_config (ModelConfig): an instance of ModelConfig.
features (list): list of features.
labels (list): list of label names.
"""
def __init__(
self, model_config: ModelConfig, features: List[BaseFeature], labels: List[str]
) -> None:
super().__init__(model_config, features, labels)
assert model_config.WhichOneof("model") == "dc2vr", (
"invalid model config: %s" % self._model_config.WhichOneof("model")
)
assert isinstance(self._model_config, multi_task_rank_pb2.DC2VR)
self._task_tower_cfgs = self._model_config.task_towers
self.init_input()
self.group_name = self.embedding_group.group_names()[0]
feature_in = self.embedding_group.group_total_dim(self.group_name)
self.bottom_mlp = None
if self._model_config.HasField("bottom_mlp"):
self.bottom_mlp = MLP(
feature_in, **config_to_kwargs(self._model_config.bottom_mlp)
)
feature_in = self.bottom_mlp.output_dim()
self.mmoe = None
if self._model_config.HasField("expert_mlp"):
self.mmoe = MMoEModule(
in_features=feature_in,
expert_mlp=config_to_kwargs(self._model_config.expert_mlp),
num_expert=self._model_config.num_expert,
num_task=len(self._task_tower_cfgs),
gate_mlp=config_to_kwargs(self._model_config.gate_mlp)
if self._model_config.HasField("gate_mlp")
else None,
)
feature_in = self.mmoe.output_dim()
self.task_mlps = nn.ModuleDict()
for task_tower_cfg in self._task_tower_cfgs:
if task_tower_cfg.HasField("mlp"):
tower_mlp = MLP(feature_in, **config_to_kwargs(task_tower_cfg.mlp))
self.task_mlps[task_tower_cfg.tower_name] = tower_mlp
self.intervention = nn.ModuleDict()
for task_tower_cfg in self._task_tower_cfgs:
tower_name = task_tower_cfg.tower_name
if task_tower_cfg.HasField("low_rank_dim"):
if tower_name in self.task_mlps:
base_intervention_dim = self.task_mlps[tower_name].output_dim()
else:
base_intervention_dim = feature_in
source_intervention_dim = 0
for intervention_tower_name in task_tower_cfg.intervention_tower_names:
if intervention_tower_name in self.intervention:
source_intervention_dim += self.intervention[
intervention_tower_name
].output_dim()
elif intervention_tower_name in self.task_mlps:
source_intervention_dim += self.task_mlps[
intervention_tower_name
].output_dim()
else:
source_intervention_dim += feature_in
intervention = Intervention(
base_intervention_dim,
source_intervention_dim,
task_tower_cfg.low_rank_dim,
task_tower_cfg.dropout_ratio,
)
self.intervention[tower_name] = intervention
self.task_outputs = nn.ModuleList()
for task_tower_cfg in self._task_tower_cfgs:
tower_name = task_tower_cfg.tower_name
if tower_name in self.intervention:
input_dim = self.intervention[tower_name].output_dim()
elif tower_name in self.task_mlps:
input_dim = self.task_mlps[tower_name].output_dim()
else:
input_dim = feature_in
self.task_outputs.append(nn.Linear(input_dim, task_tower_cfg.num_class))
def predict(self, batch: Batch) -> Dict[str, torch.Tensor]:
"""Forward the model.
Args:
batch (Batch): input batch data.
Return:
predictions (dict): a dict of predicted result.
"""
grouped_features = self.build_input(batch)
net = grouped_features[self.group_name]
if self.bottom_mlp is not None:
net = self.bottom_mlp(net)
if self.mmoe is not None:
task_input_list = self.mmoe(net)
else:
task_input_list = [net] * len(self._task_tower_cfgs)
task_net = {}
for i, task_tower_cfg in enumerate(self._task_tower_cfgs):
tower_name = task_tower_cfg.tower_name
if tower_name in self.task_mlps.keys():
task_net[tower_name] = self.task_mlps[tower_name](task_input_list[i])
else:
task_net[tower_name] = task_input_list[i]
intervention = {}
for task_tower_cfg in self._task_tower_cfgs:
tower_name = task_tower_cfg.tower_name
if task_tower_cfg.HasField("low_rank_dim"):
intervention_base = task_net[tower_name]
intervention_source = []
for intervention_tower_name in task_tower_cfg.intervention_tower_names:
intervention_source.append(intervention[intervention_tower_name])
intervention_source = torch.cat(intervention_source, dim=-1) # .mean(0)
intervention[tower_name] = self.intervention[tower_name](
intervention_base, intervention_source
)
else:
intervention[tower_name] = task_net[tower_name]
tower_outputs = {}
for i, task_tower_cfg in enumerate(self._task_tower_cfgs):
tower_name = task_tower_cfg.tower_name
tower_output = self.task_outputs[i](intervention[tower_name])
tower_outputs[tower_name] = tower_output
return self._multi_task_output_to_prediction(tower_outputs)