tzrec/models/deepfm.py (63 lines of code) (raw):
# Copyright (c) 2024, Alibaba Group;
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional
import torch
from torch import nn
from tzrec.datasets.utils import Batch
from tzrec.features.feature import BaseFeature
from tzrec.models.rank_model import RankModel
from tzrec.modules.fm import FactorizationMachine
from tzrec.modules.mlp import MLP
from tzrec.protos.model_pb2 import ModelConfig
from tzrec.utils.config_util import config_to_kwargs
class DeepFM(RankModel):
"""DeepFM model.
Args:
model_config (ModelConfig): an instance of ModelConfig.
features (list): list of features.
labels (list): list of label names.
sample_weights (list): sample weight names.
"""
def __init__(
self,
model_config: ModelConfig,
features: List[BaseFeature],
labels: List[str],
sample_weights: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
super().__init__(model_config, features, labels, sample_weights, **kwargs)
self.init_input()
self.fm = FactorizationMachine()
if self.embedding_group.has_group("fm"):
self._fm_feature_dims = self.embedding_group.group_dims("fm")
else:
self._fm_feature_dims = self.embedding_group.group_dims("deep")
assert len(set(self._fm_feature_dims)) == 1, (
"embedding dimension of fm features must be same. "
f"but got {set(self._fm_feature_dims)}"
)
deep_feature_dim = self.embedding_group.group_total_dim("deep")
self.deep_mlp = MLP(
in_features=deep_feature_dim, **config_to_kwargs(self._model_config.deep)
)
final_dim = self.deep_mlp.output_dim()
if self._model_config.HasField("final"):
self.final_mlp = MLP(
in_features=1 + self._fm_feature_dims[0] + final_dim,
**config_to_kwargs(self._model_config.final),
)
final_dim = self.final_mlp.output_dim()
self.output_mlp = nn.Linear(final_dim, self._num_class)
def predict(self, batch: Batch) -> Dict[str, torch.Tensor]:
"""Forward the model.
Args:
batch (Batch): input batch data.
Return:
predictions (dict): a dict of predicted result.
"""
grouped_features = self.build_input(batch)
# Wide
wide_feat = grouped_features["wide"]
y_wide = torch.sum(wide_feat, dim=1, keepdim=True)
# Deep
deep_feat = grouped_features["deep"]
y_deep = self.deep_mlp(deep_feat)
# FM
if self.embedding_group.has_group("fm"):
fm_feat = grouped_features["fm"]
else:
fm_feat = deep_feat
fm_feat = torch.reshape(
fm_feat, (-1, len(self._fm_feature_dims), self._fm_feature_dims[0])
)
y_fm = self.fm(fm_feat)
if self._model_config.HasField("final"):
y_cat = torch.cat([y_wide, y_fm, y_deep], dim=1)
y_final = self.final_mlp(y_cat)
y = self.output_mlp(y_final)
else:
y = y_wide + torch.sum(y_fm, dim=1, keepdim=True) + self.output_mlp(y_deep)
return self._output_to_prediction(y)