tzrec/models/dssm.py (90 lines of code) (raw):
# Copyright (c) 2024, Alibaba Group;
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional
import torch
import torch.nn.functional as F
from torch import nn
from torch._tensor import Tensor
from tzrec.datasets.utils import Batch
from tzrec.features.feature import BaseFeature
from tzrec.models.match_model import MatchModel, MatchTower
from tzrec.modules.mlp import MLP
from tzrec.protos import model_pb2, simi_pb2, tower_pb2
from tzrec.utils.config_util import config_to_kwargs
@torch.fx.wrap
def _update_dict_tensor(
tensor_dict: Dict[str, torch.Tensor],
new_tensor_dict: Optional[Dict[str, Optional[torch.Tensor]]],
) -> None:
if new_tensor_dict:
for k, v in new_tensor_dict.items():
if v is not None:
tensor_dict[k] = v
class DSSMTower(MatchTower):
"""DSSM user/item tower.
Args:
tower_config (Tower): user/item tower config.
output_dim (int): user/item output embedding dimension.
similarity (Similarity): when use COSINE similarity,
will norm the output embedding.
feature_groups (list[FeatureGroupConfig]): feature group configs.
features (list): list of features.
"""
def __init__(
self,
tower_config: tower_pb2.Tower,
output_dim: int,
similarity: simi_pb2.Similarity,
feature_groups: List[model_pb2.FeatureGroupConfig],
features: List[BaseFeature],
model_config: model_pb2.ModelConfig,
) -> None:
super().__init__(
tower_config, output_dim, similarity, feature_groups, features, model_config
)
self.init_input()
tower_feature_in = self.embedding_group.group_total_dim(self._group_name)
self.mlp = MLP(tower_feature_in, **config_to_kwargs(tower_config.mlp))
if self._output_dim > 0:
self.output = nn.Linear(self.mlp.output_dim(), output_dim)
def forward(self, batch: Batch) -> torch.Tensor:
"""Forward the tower.
Args:
batch (Batch): input batch data.
Return:
embedding (Tensor): tower output embedding.
"""
grouped_features = self.build_input(batch)
output = self.mlp(grouped_features[self._group_name])
if self._output_dim > 0:
output = self.output(output)
if self._similarity == simi_pb2.Similarity.COSINE:
output = F.normalize(output, p=2.0, dim=1)
return output
class DSSM(MatchModel):
"""DSSM model.
Args:
model_config (ModelConfig): an instance of ModelConfig.
features (list): list of features.
labels (list): list of label names.
"""
def __init__(
self,
model_config: model_pb2.ModelConfig,
features: List[BaseFeature],
labels: List[str],
sample_weights: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
super().__init__(model_config, features, labels, sample_weights, **kwargs)
name_to_feature_group = {x.group_name: x for x in model_config.feature_groups}
user_group = name_to_feature_group[self._model_config.user_tower.input]
item_group = name_to_feature_group[self._model_config.item_tower.input]
user_features = self.get_features_in_feature_groups([user_group])
item_features = self.get_features_in_feature_groups([item_group])
self.user_tower = DSSMTower(
self._model_config.user_tower,
self._model_config.output_dim,
self._model_config.similarity,
[user_group],
user_features,
model_config,
)
self.item_tower = DSSMTower(
self._model_config.item_tower,
self._model_config.output_dim,
self._model_config.similarity,
[item_group],
item_features,
model_config,
)
def predict(self, batch: Batch) -> Dict[str, Tensor]:
"""Forward the model.
Args:
batch (Batch): input batch data.
Return:
predictions (dict): a dict of predicted result.
"""
user_tower_emb = self.user_tower(batch)
item_tower_emb = self.item_tower(batch)
_update_dict_tensor(
self._loss_collection, self.user_tower.group_variational_dropout_loss
)
_update_dict_tensor(
self._loss_collection, self.item_tower.group_variational_dropout_loss
)
ui_sim = (
self.sim(user_tower_emb, item_tower_emb) / self._model_config.temperature
)
return {"similarity": ui_sim}