tzrec/models/dssm.py (90 lines of code) (raw):

# Copyright (c) 2024, Alibaba Group; # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Optional import torch import torch.nn.functional as F from torch import nn from torch._tensor import Tensor from tzrec.datasets.utils import Batch from tzrec.features.feature import BaseFeature from tzrec.models.match_model import MatchModel, MatchTower from tzrec.modules.mlp import MLP from tzrec.protos import model_pb2, simi_pb2, tower_pb2 from tzrec.utils.config_util import config_to_kwargs @torch.fx.wrap def _update_dict_tensor( tensor_dict: Dict[str, torch.Tensor], new_tensor_dict: Optional[Dict[str, Optional[torch.Tensor]]], ) -> None: if new_tensor_dict: for k, v in new_tensor_dict.items(): if v is not None: tensor_dict[k] = v class DSSMTower(MatchTower): """DSSM user/item tower. Args: tower_config (Tower): user/item tower config. output_dim (int): user/item output embedding dimension. similarity (Similarity): when use COSINE similarity, will norm the output embedding. feature_groups (list[FeatureGroupConfig]): feature group configs. features (list): list of features. """ def __init__( self, tower_config: tower_pb2.Tower, output_dim: int, similarity: simi_pb2.Similarity, feature_groups: List[model_pb2.FeatureGroupConfig], features: List[BaseFeature], model_config: model_pb2.ModelConfig, ) -> None: super().__init__( tower_config, output_dim, similarity, feature_groups, features, model_config ) self.init_input() tower_feature_in = self.embedding_group.group_total_dim(self._group_name) self.mlp = MLP(tower_feature_in, **config_to_kwargs(tower_config.mlp)) if self._output_dim > 0: self.output = nn.Linear(self.mlp.output_dim(), output_dim) def forward(self, batch: Batch) -> torch.Tensor: """Forward the tower. Args: batch (Batch): input batch data. Return: embedding (Tensor): tower output embedding. """ grouped_features = self.build_input(batch) output = self.mlp(grouped_features[self._group_name]) if self._output_dim > 0: output = self.output(output) if self._similarity == simi_pb2.Similarity.COSINE: output = F.normalize(output, p=2.0, dim=1) return output class DSSM(MatchModel): """DSSM model. Args: model_config (ModelConfig): an instance of ModelConfig. features (list): list of features. labels (list): list of label names. """ def __init__( self, model_config: model_pb2.ModelConfig, features: List[BaseFeature], labels: List[str], sample_weights: Optional[List[str]] = None, **kwargs: Any, ) -> None: super().__init__(model_config, features, labels, sample_weights, **kwargs) name_to_feature_group = {x.group_name: x for x in model_config.feature_groups} user_group = name_to_feature_group[self._model_config.user_tower.input] item_group = name_to_feature_group[self._model_config.item_tower.input] user_features = self.get_features_in_feature_groups([user_group]) item_features = self.get_features_in_feature_groups([item_group]) self.user_tower = DSSMTower( self._model_config.user_tower, self._model_config.output_dim, self._model_config.similarity, [user_group], user_features, model_config, ) self.item_tower = DSSMTower( self._model_config.item_tower, self._model_config.output_dim, self._model_config.similarity, [item_group], item_features, model_config, ) def predict(self, batch: Batch) -> Dict[str, Tensor]: """Forward the model. Args: batch (Batch): input batch data. Return: predictions (dict): a dict of predicted result. """ user_tower_emb = self.user_tower(batch) item_tower_emb = self.item_tower(batch) _update_dict_tensor( self._loss_collection, self.user_tower.group_variational_dropout_loss ) _update_dict_tensor( self._loss_collection, self.item_tower.group_variational_dropout_loss ) ui_sim = ( self.sim(user_tower_emb, item_tower_emb) / self._model_config.temperature ) return {"similarity": ui_sim}