tzrec/models/dssm_v2.py (79 lines of code) (raw):

# Copyright (c) 2024, Alibaba Group; # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Optional import torch import torch.nn.functional as F from torch import nn from torch._tensor import Tensor from tzrec.datasets.utils import Batch from tzrec.features.feature import BaseFeature from tzrec.models.match_model import MatchModel, MatchTowerWoEG from tzrec.modules.embedding import EmbeddingGroup from tzrec.modules.mlp import MLP from tzrec.protos import model_pb2, simi_pb2, tower_pb2 from tzrec.utils.config_util import config_to_kwargs class DSSMTower(MatchTowerWoEG): """DSSM user/item tower. Args: tower_config (Tower): user/item tower config. output_dim (int): user/item output embedding dimension. similarity (Similarity): when use COSINE similarity, will norm the output embedding. feature_group (FeatureGroupConfig): feature group config. feature_group_dims (list): feature dimension for each feature. features (list): list of features. """ def __init__( self, tower_config: tower_pb2.Tower, output_dim: int, similarity: simi_pb2.Similarity, feature_group: model_pb2.FeatureGroupConfig, feature_group_dims: List[int], features: List[BaseFeature], ) -> None: super().__init__(tower_config, output_dim, similarity, feature_group, features) tower_feature_in = sum(feature_group_dims) self.mlp = MLP(tower_feature_in, **config_to_kwargs(tower_config.mlp)) if self._output_dim > 0: self.output = nn.Linear(self.mlp.output_dim(), output_dim) def forward(self, feature: torch.Tensor) -> torch.Tensor: """Forward the tower. Args: feature (torch.Tensor): input batch data. Return: embedding (dict): tower output embedding. """ output = self.mlp(feature) if self._output_dim > 0: output = self.output(output) if self._similarity == simi_pb2.Similarity.COSINE: output = F.normalize(output, p=2.0, dim=1) return output class DSSMV2(MatchModel): """DSSM model. Args: model_config (ModelConfig): an instance of ModelConfig. features (list): list of features. labels (list): list of label names. sample_weights (list): sample weight names. """ def __init__( self, model_config: model_pb2.ModelConfig, features: List[BaseFeature], labels: List[str], sample_weights: Optional[List[str]] = None, **kwargs: Any, ) -> None: super().__init__(model_config, features, labels, sample_weights, **kwargs) name_to_feature_group = {x.group_name: x for x in model_config.feature_groups} self.embedding_group = EmbeddingGroup( features, list(model_config.feature_groups) ) user_group = name_to_feature_group[self._model_config.user_tower.input] item_group = name_to_feature_group[self._model_config.item_tower.input] user_features = self.get_features_in_feature_groups([user_group]) item_features = self.get_features_in_feature_groups([item_group]) self.user_tower = DSSMTower( self._model_config.user_tower, self._model_config.output_dim, self._model_config.similarity, user_group, self.embedding_group.group_dims(self._model_config.user_tower.input), user_features, ) self.item_tower = DSSMTower( self._model_config.item_tower, self._model_config.output_dim, self._model_config.similarity, item_group, self.embedding_group.group_dims(self._model_config.item_tower.input), item_features, ) def predict(self, batch: Batch) -> Dict[str, Tensor]: """Forward the model. Args: batch (Batch): input batch data. Return: predictions (dict): a dict of predicted result. """ grouped_features = self.embedding_group(batch) batch_size = batch.labels[self._labels[0]].size(0) user_feat = grouped_features[self._model_config.user_tower.input][:batch_size] item_feat = grouped_features[self._model_config.item_tower.input] user_tower_emb = self.user_tower(user_feat) item_tower_emb = self.item_tower(item_feat) ui_sim = ( self.sim(user_tower_emb, item_tower_emb) / self._model_config.temperature ) return {"similarity": ui_sim}