tzrec/models/masknet.py (32 lines of code) (raw):
# Copyright (c) 2025, Alibaba Group;
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional
import torch
from torch import nn
from tzrec.datasets.utils import Batch
from tzrec.features.feature import BaseFeature
from tzrec.models.rank_model import RankModel
from tzrec.modules.masknet_module import MaskNetModule
from tzrec.protos.model_pb2 import ModelConfig
class MaskNet(RankModel):
"""Masknet model.
Args:
model_config (ModelConfig): an instance of ModelConfig.
features (list): list of features.
labels (list): list of label names.
sample_weights (list): sample weight names.
"""
def __init__(
self,
model_config: ModelConfig,
features: List[BaseFeature],
labels: List[str],
sample_weights: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
super().__init__(model_config, features, labels, sample_weights, **kwargs)
self.init_input()
self.group_name = self.embedding_group.group_names()[0]
feature_dim = self.embedding_group.group_total_dim(self.group_name)
masknet_config = model_config.mask_net.mask_net_module
self.mask_net_layer = MaskNetModule(masknet_config, feature_dim)
self.output_linear = nn.Linear(
masknet_config.top_mlp.hidden_units[-1], self._num_class, bias=False
)
def predict(self, batch: Batch) -> Dict[str, torch.Tensor]:
"""Forward method."""
feature_dict = self.build_input(batch)
features = feature_dict[self.group_name]
hidden = self.mask_net_layer(features)
output = self.output_linear(hidden)
return self._output_to_prediction(output)