tzrec/models/mmoe.py (49 lines of code) (raw):
# Copyright (c) 2024, Alibaba Group;
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional
import torch
from torch import nn
from tzrec.datasets.utils import Batch
from tzrec.features.feature import BaseFeature
from tzrec.models.multi_task_rank import MultiTaskRank
from tzrec.modules.mmoe import MMoE as MMoEModule
from tzrec.modules.task_tower import TaskTower
from tzrec.protos.model_pb2 import ModelConfig
from tzrec.utils.config_util import config_to_kwargs
class MMoE(MultiTaskRank):
"""Multi-gate Mixture-of-Experts model.
Args:
model_config (ModelConfig): an instance of ModelConfig.
features (list): list of features.
labels (list): list of label names.
sample_weights (list): sample weight names.
"""
def __init__(
self,
model_config: ModelConfig,
features: List[BaseFeature],
labels: List[str],
sample_weights: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
super().__init__(model_config, features, labels, sample_weights, **kwargs)
self.init_input()
self.group_name = self.embedding_group.group_names()[0]
mmoe_feature_in = self.embedding_group.group_total_dim(self.group_name)
self.mmoe = MMoEModule(
in_features=mmoe_feature_in,
expert_mlp=config_to_kwargs(self._model_config.expert_mlp),
num_expert=self._model_config.num_expert,
num_task=len(self._task_tower_cfgs),
gate_mlp=config_to_kwargs(self._model_config.gate_mlp)
if self._model_config.HasField("gate_mlp")
else None,
)
tower_feature_in = self.mmoe.output_dim()
self._task_tower = nn.ModuleList()
for task_tower_cfg in self._task_tower_cfgs:
task_tower_cfg = config_to_kwargs(task_tower_cfg)
mlp = task_tower_cfg["mlp"] if "mlp" in task_tower_cfg else None
self._task_tower.append(
TaskTower(tower_feature_in, task_tower_cfg["num_class"], mlp=mlp)
)
def predict(self, batch: Batch) -> Dict[str, torch.Tensor]:
"""Forward the model.
Args:
batch (Batch): input batch data.
Return:
predictions (dict): a dict of predicted result.
"""
grouped_features = self.build_input(batch)
task_input_list = self.mmoe(grouped_features[self.group_name])
tower_outputs = {}
for i, task_tower_cfg in enumerate(self._task_tower_cfgs):
tower_name = task_tower_cfg.tower_name
tower_output = self._task_tower[i](task_input_list[i])
tower_outputs[tower_name] = tower_output
return self._multi_task_output_to_prediction(tower_outputs)