tzrec/models/multi_tower.py (46 lines of code) (raw):
# Copyright (c) 2024, Alibaba Group;
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional
import torch
from torch import nn
from tzrec.datasets.utils import Batch
from tzrec.features.feature import BaseFeature
from tzrec.models.rank_model import RankModel
from tzrec.modules.mlp import MLP
from tzrec.protos.model_pb2 import ModelConfig
from tzrec.utils.config_util import config_to_kwargs
class MultiTower(RankModel):
"""Multi Tower model.
Args:
model_config (ModelConfig): an instance of ModelConfig.
features (list): list of features.
labels (list): list of label names.
sample_weights (list): sample weight names.
"""
def __init__(
self,
model_config: ModelConfig,
features: List[BaseFeature],
labels: List[str],
sample_weights: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
super().__init__(model_config, features, labels, sample_weights, **kwargs)
self.init_input()
self.towers = nn.ModuleDict()
total_tower_dim = 0
for tower in self._model_config.towers:
group_name = tower.input
tower_feature_in = self.embedding_group.group_total_dim(group_name)
tower_mlp = MLP(tower_feature_in, **config_to_kwargs(tower.mlp))
self.towers[group_name] = tower_mlp
total_tower_dim += tower_mlp.output_dim()
final_dim = total_tower_dim
if self._model_config.HasField("final"):
self.final_mlp = MLP(
in_features=total_tower_dim,
**config_to_kwargs(self._model_config.final),
)
final_dim = self.final_mlp.output_dim()
self.output_mlp = nn.Linear(final_dim, self._num_class)
def predict(self, batch: Batch) -> Dict[str, torch.Tensor]:
"""Forward the model.
Args:
batch (Batch): input batch data.
Return:
predictions (dict): a dict of predicted result.
"""
grouped_features = self.build_input(batch)
tower_outputs = []
for k, tower_mlp in self.towers.items():
tower_outputs.append(tower_mlp(grouped_features[k]))
tower_output = torch.cat(tower_outputs, dim=-1)
if self._model_config.HasField("final"):
tower_output = self.final_mlp(tower_output)
y = self.output_mlp(tower_output)
return self._output_to_prediction(y)