tzrec/models/ple.py (73 lines of code) (raw):
# Copyright (c) 2024, Alibaba Group;
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional
import torch
from torch import nn
from tzrec.datasets.utils import Batch
from tzrec.features.feature import BaseFeature
from tzrec.models.multi_task_rank import MultiTaskRank
from tzrec.modules.extraction_net import ExtractionNet
from tzrec.modules.task_tower import TaskTower
from tzrec.protos.model_pb2 import ModelConfig
from tzrec.protos.models import multi_task_rank_pb2
from tzrec.utils.config_util import config_to_kwargs
class PLE(MultiTaskRank):
"""Progressive Layered Extraction model.
Args:
model_config (ModelConfig): an instance of ModelConfig.
features (list): list of features.
labels (list): list of label names.
sample_weights (list): sample weight names.
"""
def __init__(
self,
model_config: ModelConfig,
features: List[BaseFeature],
labels: List[str],
sample_weights: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
super().__init__(model_config, features, labels, sample_weights, **kwargs)
assert model_config.WhichOneof("model") == "ple", (
"invalid model config: %s" % self._model_config.WhichOneof("model")
)
assert isinstance(self._model_config, multi_task_rank_pb2.PLE)
self._task_nums = len(self._model_config.task_towers)
self._layer_nums = len(self._model_config.extraction_networks)
self.init_input()
self.group_name = self.embedding_group.group_names()[0]
feature_in = self.embedding_group.group_total_dim(self.group_name)
self._extraction_nets = nn.ModuleList()
in_extraction_networks = [feature_in] * self._task_nums
in_shared_expert = feature_in
for i, extraction_network_cfg in enumerate(
self._model_config.extraction_networks
):
if i == self._layer_nums - 1:
final_flag = True
else:
final_flag = False
extraction_network_cfg = config_to_kwargs(extraction_network_cfg)
extraction = ExtractionNet(
in_extraction_networks,
in_shared_expert,
final_flag=final_flag,
**extraction_network_cfg,
)
self._extraction_nets.append(extraction)
output_dims = extraction.output_dim()
in_extraction_networks = output_dims[:-1]
in_shared_expert = output_dims[-1]
self._task_tower = nn.ModuleList()
for i, tower_cfg in enumerate(self._task_tower_cfgs):
tower_cfg = config_to_kwargs(tower_cfg)
mlp = tower_cfg["mlp"] if "mlp" in tower_cfg else None
self._task_tower.append(
TaskTower(in_extraction_networks[i], tower_cfg["num_class"], mlp=mlp)
)
def predict(self, batch: Batch) -> Dict[str, torch.Tensor]:
"""Forward the model.
Args:
batch (Batch): input batch data.
Return:
predictions (dict): a dict of predicted result.
"""
grouped_features = self.build_input(batch)
net = grouped_features[self.group_name]
extraction_network_fea = [net] * self._task_nums
shared_expert_fea = net
for extraction_net in self._extraction_nets:
extraction_network_fea, shared_expert_fea = extraction_net(
extraction_network_fea, shared_expert_fea
)
tower_outputs = {}
for i, task_tower_cfg in enumerate(self._task_tower_cfgs):
tower_name = task_tower_cfg.tower_name
tower_output = self._task_tower[i](extraction_network_fea[i])
tower_outputs[tower_name] = tower_output
return self._multi_task_output_to_prediction(tower_outputs)