tzrec/models/rocket_launching.py (224 lines of code) (raw):

# Copyright (c) 2024, Alibaba Group; # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Optional import torch import torch.nn.functional as F from torch import nn from tzrec.datasets.utils import Batch from tzrec.features.feature import BaseFeature from tzrec.models.rank_model import RankModel from tzrec.modules.mlp import MLP from tzrec.modules.utils import div_no_nan from tzrec.protos.model_pb2 import ModelConfig from tzrec.protos.simi_pb2 import Similarity from tzrec.utils.config_util import config_to_kwargs class RocketLaunching(RankModel): """RocketLaunching model. Args: model_config (ModelConfig): an instance of ModelConfig. features (list): list of features. labels (list): list of label names. sample_weights (list): sample weight names. """ def __init__( self, model_config: ModelConfig, features: List[BaseFeature], labels: List[str], sample_weights: Optional[List[str]] = None, **kwargs: Any, ) -> None: super().__init__(model_config, features, labels, sample_weights, **kwargs) self.return_hidden_layer_feature = self._model_config.feature_based_distillation self.init_input() self.group_name = self.embedding_group.group_names()[0] feature_in = self.embedding_group.group_total_dim(self.group_name) self.share_mlp = None if self._model_config.HasField("share_mlp"): self.share_mlp = MLP( feature_in, **config_to_kwargs(self._model_config.share_mlp) ) self.booster_mlp = MLP( self.share_mlp.output_dim() if self.share_mlp else feature_in, return_hidden_layer_feature=self.return_hidden_layer_feature, **config_to_kwargs(self._model_config.booster_mlp), ) self.booster_linear = torch.nn.Linear( self.booster_mlp.output_dim(), self._num_class ) self.light_mlp = MLP( self.share_mlp.output_dim() if self.share_mlp else feature_in, return_hidden_layer_feature=self.return_hidden_layer_feature, **config_to_kwargs(self._model_config.light_mlp), ) self.light_linear = torch.nn.Linear( self.light_mlp.output_dim(), self._num_class ) self.hint_loss_name = "hint_l2_loss" self.mlp_index_dict = self._get_distillation_mlp_index() def _get_distillation_mlp_index(self) -> Dict[int, int]: booster_hidden_units = self._model_config.booster_mlp.hidden_units light_hidden_units = self._model_config.light_mlp.hidden_units mlp_index_dict = {} for i, unit_i in enumerate(light_hidden_units): for j, unit_j in enumerate(booster_hidden_units): if unit_i == unit_j: mlp_index_dict[i] = j break return mlp_index_dict def predict(self, batch: Batch) -> Dict[str, torch.Tensor]: """Forward the model. Args: batch (Batch): input batch data. Return: predictions (dict): a dict of predicted result. """ grouped_features = self.build_input(batch) net = grouped_features[self.group_name] if self.share_mlp: share_net = self.share_mlp(net) else: share_net = net light_net = self.light_mlp(share_net.detach()) if self.return_hidden_layer_feature: light_out = self.light_linear(light_net["hidden_layer_end"]) else: light_out = self.light_linear(light_net) prediction_dict = {} prediction_dict.update(self._output_to_prediction(light_out, suffix="_light")) if self.training: booster_net = self.booster_mlp(share_net) if self.return_hidden_layer_feature: booster_out = self.booster_linear(booster_net["hidden_layer_end"]) else: booster_out = self.booster_linear(booster_net) prediction_dict.update( self._output_to_prediction(booster_out, suffix="_booster") ) for i, j in self.mlp_index_dict.items(): prediction_dict[f"light_{i}"] = light_net["hidden_layer" + str(i)] prediction_dict[f"booster_{j}"] = booster_net["hidden_layer" + str(j)] return prediction_dict def feature_based_sim( self, light_feature: torch.Tensor, booster_feature: torch.Tensor, loss_weight: Optional[torch.Tensor], ) -> torch.Tensor: """Compute similarity between booster_net and light_net.""" feature_distillation_function = self._model_config.feature_distillation_function booster_feature_no_gradient = booster_feature.detach() if feature_distillation_function == Similarity.COSINE: booster_feature_no_gradient_norm = F.normalize( booster_feature_no_gradient, p=2, dim=1 ) light_feature_norm = F.normalize(light_feature, p=2, dim=1) multi_middle_layer = torch.mul( booster_feature_no_gradient_norm, light_feature_norm ) if loss_weight is not None: sim_middle_layer = -0.1 * torch.mean( torch.sum(multi_middle_layer, dim=1) * loss_weight ) else: sim_middle_layer = -0.1 * torch.mean( torch.sum(multi_middle_layer, dim=1) ) return sim_middle_layer else: distance_square = torch.square(booster_feature_no_gradient - light_feature) if loss_weight is not None: distance_square = torch.sum(distance_square, dim=1) * loss_weight return torch.sqrt(torch.sum(distance_square)) def init_loss(self) -> None: """Initialize loss modules.""" reduction = "none" if self._sample_weight_name else "mean" for loss_cfg in self._base_model_config.losses: self._init_loss_impl( loss_cfg, self._num_class, reduction=reduction, suffix="_booster" ) self._init_loss_impl( loss_cfg, self._num_class, reduction=reduction, suffix="_light" ) self._loss_modules[self.hint_loss_name] = nn.MSELoss(reduction=reduction) def init_metric(self) -> None: """Initialize metric modules.""" for metric_cfg in self._base_model_config.metrics: self._init_metric_impl(metric_cfg, self._num_class, "_booster") self._init_metric_impl(metric_cfg, self._num_class, "_light") for loss_cfg in self._base_model_config.losses: self._init_loss_metric_impl(loss_cfg, "_booster") self._init_loss_metric_impl(loss_cfg, "_light") def _distillation_loss( self, predictions: Dict[str, torch.Tensor], loss_weight: Optional[torch.Tensor] ) -> Dict[str, torch.Tensor]: losses = {} # compute booster feature and light feature similarity loss if self._model_config.feature_based_distillation: for i, j in self.mlp_index_dict.items(): light_feature = predictions[f"light_{i}"] booster_feature = predictions[f"booster_{j}"] losses[f"similarity_{i}_{j}"] = self.feature_based_sim( light_feature, booster_feature, loss_weight ) # computer booster logits and light logits mse loss logits_booster = predictions["logits_booster"] logits_light = predictions["logits_light"] batch_hint_loss = self._loss_modules[self.hint_loss_name]( logits_light, logits_booster.detach() ) if loss_weight is not None: losses[self.hint_loss_name] = torch.mean(batch_hint_loss * loss_weight) else: losses[self.hint_loss_name] = batch_hint_loss return losses def loss( self, predictions: Dict[str, torch.Tensor], batch: Batch ) -> Dict[str, torch.Tensor]: """Compute loss of the model.""" losses = {} if self._sample_weight_name: loss_weight = batch.sample_weights[self._sample_weight_name] loss_weight = div_no_nan(loss_weight, torch.mean(loss_weight)) else: loss_weight = None # compute booster and light net classifier loss for loss_cfg in self._base_model_config.losses: if self.training: losses.update( self._loss_impl( predictions, batch, self._label_name, loss_weight, loss_cfg, num_class=self._num_class, suffix="_booster", ) ) losses.update( self._loss_impl( predictions, batch, self._label_name, loss_weight, loss_cfg, num_class=self._num_class, suffix="_light", ) ) losses.update(self._loss_collection) if self.training: # compute distillation loss losses.update(self._distillation_loss(predictions, loss_weight)) return losses def update_metric( self, predictions: Dict[str, torch.Tensor], batch: Batch, losses: Optional[Dict[str, torch.Tensor]] = None, ) -> None: """Update metric state. Args: predictions (dict): a dict of predicted result. batch (Batch): input batch data. losses (dict, optional): a dict of loss. """ for metric_cfg in self._base_model_config.metrics: if self.training: self._update_metric_impl( predictions, batch, self._label_name, metric_cfg, num_class=self._num_class, suffix="_booster", ) self._update_metric_impl( predictions, batch, self._label_name, metric_cfg, num_class=self._num_class, suffix="_light", ) if losses is not None: for loss_cfg in self._base_model_config.losses: if self.training: self._update_loss_metric_impl( losses, batch, self._label_name, loss_cfg, suffix="_booster" ) self._update_loss_metric_impl( losses, batch, self._label_name, loss_cfg, suffix="_light" )