tzrec/models/rocket_launching.py (224 lines of code) (raw):
# Copyright (c) 2024, Alibaba Group;
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional
import torch
import torch.nn.functional as F
from torch import nn
from tzrec.datasets.utils import Batch
from tzrec.features.feature import BaseFeature
from tzrec.models.rank_model import RankModel
from tzrec.modules.mlp import MLP
from tzrec.modules.utils import div_no_nan
from tzrec.protos.model_pb2 import ModelConfig
from tzrec.protos.simi_pb2 import Similarity
from tzrec.utils.config_util import config_to_kwargs
class RocketLaunching(RankModel):
"""RocketLaunching model.
Args:
model_config (ModelConfig): an instance of ModelConfig.
features (list): list of features.
labels (list): list of label names.
sample_weights (list): sample weight names.
"""
def __init__(
self,
model_config: ModelConfig,
features: List[BaseFeature],
labels: List[str],
sample_weights: Optional[List[str]] = None,
**kwargs: Any,
) -> None:
super().__init__(model_config, features, labels, sample_weights, **kwargs)
self.return_hidden_layer_feature = self._model_config.feature_based_distillation
self.init_input()
self.group_name = self.embedding_group.group_names()[0]
feature_in = self.embedding_group.group_total_dim(self.group_name)
self.share_mlp = None
if self._model_config.HasField("share_mlp"):
self.share_mlp = MLP(
feature_in, **config_to_kwargs(self._model_config.share_mlp)
)
self.booster_mlp = MLP(
self.share_mlp.output_dim() if self.share_mlp else feature_in,
return_hidden_layer_feature=self.return_hidden_layer_feature,
**config_to_kwargs(self._model_config.booster_mlp),
)
self.booster_linear = torch.nn.Linear(
self.booster_mlp.output_dim(), self._num_class
)
self.light_mlp = MLP(
self.share_mlp.output_dim() if self.share_mlp else feature_in,
return_hidden_layer_feature=self.return_hidden_layer_feature,
**config_to_kwargs(self._model_config.light_mlp),
)
self.light_linear = torch.nn.Linear(
self.light_mlp.output_dim(), self._num_class
)
self.hint_loss_name = "hint_l2_loss"
self.mlp_index_dict = self._get_distillation_mlp_index()
def _get_distillation_mlp_index(self) -> Dict[int, int]:
booster_hidden_units = self._model_config.booster_mlp.hidden_units
light_hidden_units = self._model_config.light_mlp.hidden_units
mlp_index_dict = {}
for i, unit_i in enumerate(light_hidden_units):
for j, unit_j in enumerate(booster_hidden_units):
if unit_i == unit_j:
mlp_index_dict[i] = j
break
return mlp_index_dict
def predict(self, batch: Batch) -> Dict[str, torch.Tensor]:
"""Forward the model.
Args:
batch (Batch): input batch data.
Return:
predictions (dict): a dict of predicted result.
"""
grouped_features = self.build_input(batch)
net = grouped_features[self.group_name]
if self.share_mlp:
share_net = self.share_mlp(net)
else:
share_net = net
light_net = self.light_mlp(share_net.detach())
if self.return_hidden_layer_feature:
light_out = self.light_linear(light_net["hidden_layer_end"])
else:
light_out = self.light_linear(light_net)
prediction_dict = {}
prediction_dict.update(self._output_to_prediction(light_out, suffix="_light"))
if self.training:
booster_net = self.booster_mlp(share_net)
if self.return_hidden_layer_feature:
booster_out = self.booster_linear(booster_net["hidden_layer_end"])
else:
booster_out = self.booster_linear(booster_net)
prediction_dict.update(
self._output_to_prediction(booster_out, suffix="_booster")
)
for i, j in self.mlp_index_dict.items():
prediction_dict[f"light_{i}"] = light_net["hidden_layer" + str(i)]
prediction_dict[f"booster_{j}"] = booster_net["hidden_layer" + str(j)]
return prediction_dict
def feature_based_sim(
self,
light_feature: torch.Tensor,
booster_feature: torch.Tensor,
loss_weight: Optional[torch.Tensor],
) -> torch.Tensor:
"""Compute similarity between booster_net and light_net."""
feature_distillation_function = self._model_config.feature_distillation_function
booster_feature_no_gradient = booster_feature.detach()
if feature_distillation_function == Similarity.COSINE:
booster_feature_no_gradient_norm = F.normalize(
booster_feature_no_gradient, p=2, dim=1
)
light_feature_norm = F.normalize(light_feature, p=2, dim=1)
multi_middle_layer = torch.mul(
booster_feature_no_gradient_norm, light_feature_norm
)
if loss_weight is not None:
sim_middle_layer = -0.1 * torch.mean(
torch.sum(multi_middle_layer, dim=1) * loss_weight
)
else:
sim_middle_layer = -0.1 * torch.mean(
torch.sum(multi_middle_layer, dim=1)
)
return sim_middle_layer
else:
distance_square = torch.square(booster_feature_no_gradient - light_feature)
if loss_weight is not None:
distance_square = torch.sum(distance_square, dim=1) * loss_weight
return torch.sqrt(torch.sum(distance_square))
def init_loss(self) -> None:
"""Initialize loss modules."""
reduction = "none" if self._sample_weight_name else "mean"
for loss_cfg in self._base_model_config.losses:
self._init_loss_impl(
loss_cfg, self._num_class, reduction=reduction, suffix="_booster"
)
self._init_loss_impl(
loss_cfg, self._num_class, reduction=reduction, suffix="_light"
)
self._loss_modules[self.hint_loss_name] = nn.MSELoss(reduction=reduction)
def init_metric(self) -> None:
"""Initialize metric modules."""
for metric_cfg in self._base_model_config.metrics:
self._init_metric_impl(metric_cfg, self._num_class, "_booster")
self._init_metric_impl(metric_cfg, self._num_class, "_light")
for loss_cfg in self._base_model_config.losses:
self._init_loss_metric_impl(loss_cfg, "_booster")
self._init_loss_metric_impl(loss_cfg, "_light")
def _distillation_loss(
self, predictions: Dict[str, torch.Tensor], loss_weight: Optional[torch.Tensor]
) -> Dict[str, torch.Tensor]:
losses = {}
# compute booster feature and light feature similarity loss
if self._model_config.feature_based_distillation:
for i, j in self.mlp_index_dict.items():
light_feature = predictions[f"light_{i}"]
booster_feature = predictions[f"booster_{j}"]
losses[f"similarity_{i}_{j}"] = self.feature_based_sim(
light_feature, booster_feature, loss_weight
)
# computer booster logits and light logits mse loss
logits_booster = predictions["logits_booster"]
logits_light = predictions["logits_light"]
batch_hint_loss = self._loss_modules[self.hint_loss_name](
logits_light, logits_booster.detach()
)
if loss_weight is not None:
losses[self.hint_loss_name] = torch.mean(batch_hint_loss * loss_weight)
else:
losses[self.hint_loss_name] = batch_hint_loss
return losses
def loss(
self, predictions: Dict[str, torch.Tensor], batch: Batch
) -> Dict[str, torch.Tensor]:
"""Compute loss of the model."""
losses = {}
if self._sample_weight_name:
loss_weight = batch.sample_weights[self._sample_weight_name]
loss_weight = div_no_nan(loss_weight, torch.mean(loss_weight))
else:
loss_weight = None
# compute booster and light net classifier loss
for loss_cfg in self._base_model_config.losses:
if self.training:
losses.update(
self._loss_impl(
predictions,
batch,
self._label_name,
loss_weight,
loss_cfg,
num_class=self._num_class,
suffix="_booster",
)
)
losses.update(
self._loss_impl(
predictions,
batch,
self._label_name,
loss_weight,
loss_cfg,
num_class=self._num_class,
suffix="_light",
)
)
losses.update(self._loss_collection)
if self.training:
# compute distillation loss
losses.update(self._distillation_loss(predictions, loss_weight))
return losses
def update_metric(
self,
predictions: Dict[str, torch.Tensor],
batch: Batch,
losses: Optional[Dict[str, torch.Tensor]] = None,
) -> None:
"""Update metric state.
Args:
predictions (dict): a dict of predicted result.
batch (Batch): input batch data.
losses (dict, optional): a dict of loss.
"""
for metric_cfg in self._base_model_config.metrics:
if self.training:
self._update_metric_impl(
predictions,
batch,
self._label_name,
metric_cfg,
num_class=self._num_class,
suffix="_booster",
)
self._update_metric_impl(
predictions,
batch,
self._label_name,
metric_cfg,
num_class=self._num_class,
suffix="_light",
)
if losses is not None:
for loss_cfg in self._base_model_config.losses:
if self.training:
self._update_loss_metric_impl(
losses, batch, self._label_name, loss_cfg, suffix="_booster"
)
self._update_loss_metric_impl(
losses, batch, self._label_name, loss_cfg, suffix="_light"
)