tzrec/modules/interaction.py (54 lines of code) (raw):
# Copyright (c) 2024, Alibaba Group;
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import torch
from torch import nn
@torch.fx.wrap
def _new_length_tensor(
length_per_key: List[int], device_t: torch.Tensor
) -> torch.Tensor:
return torch.tensor(length_per_key, dtype=torch.int32, device=device_t.device)
class InputSENet(nn.Module):
"""SENet for Input Embedding."""
def __init__(self, length_per_key: List[int], reduction_ratio: int = 2) -> None:
super().__init__()
field_size = len(length_per_key)
reduction_size = max(1, field_size // reduction_ratio)
self._length_per_key = length_per_key
self.excitation = nn.Sequential(
nn.Linear(field_size, reduction_size, bias=False),
nn.ReLU(),
nn.Linear(reduction_size, field_size, bias=False),
nn.Sigmoid(),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward the module.
Args:
x (torch.Tensor): a Tensor contains embedding of N features.
"""
length_per_key = _new_length_tensor(self._length_per_key, x)
lengths = length_per_key.unsqueeze(0).repeat(x.size(0), 1)
xx = torch.segment_reduce(x, "mean", lengths=lengths, axis=1)
xx = self.excitation(xx)
x = x * torch.repeat_interleave(xx, repeats=length_per_key, dim=1)
return x
class InteractionArch(nn.Module):
"""Feature interaction module.
Args:
feature_num (int): feature_num
"""
def __init__(self, feature_num: int) -> None:
super().__init__()
self.feature_num: int = feature_num
self.register_buffer(
"triu_indices",
torch.triu_indices(self.feature_num, self.feature_num, offset=1),
persistent=False,
)
def output_dim(self) -> int:
"""Output dimension of the module."""
dim = 0
for i in range(1, self.feature_num):
dim += i
return dim
def forward(
self, dense_features: torch.Tensor, sparse_features: torch.Tensor
) -> torch.Tensor:
"""Forward the module.
Args:
dense_features (torch.Tensor): an input tensor of size B X D.
sparse_features (torch.Tensor): an input tensor of size B X N X D.
"""
if self.feature_num <= 0:
return dense_features
combined_values = torch.cat(
(dense_features.unsqueeze(1), sparse_features), dim=1
) # B X (N+1) X D
interactions = torch.bmm(
combined_values, torch.transpose(combined_values, 1, 2)
) # B X (N+1) X (N+1)
interactions_flat = interactions[:, self.triu_indices[0], self.triu_indices[1]]
return interactions_flat