tzrec/modules/mmoe.py (49 lines of code) (raw):
# Copyright (c) 2024, Alibaba Group;
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional
import torch
from torch import nn
from torch.nn import functional as F
from tzrec.modules.mlp import MLP
class MMoE(nn.Module):
"""Multi-gate Mixture-of-Experts module.
Args:
in_features (int): in_size of the input.
attn_mlp (dict): target attention MLP module parameters.
"""
def __init__(
self,
in_features: int,
expert_mlp: Dict[str, Any],
num_expert: int,
num_task: int,
gate_mlp: Optional[Dict[str, Any]] = None,
) -> None:
super().__init__()
self.num_expert = num_expert
self.num_task = num_task
self.expert_mlps = nn.ModuleList(
[MLP(in_features=in_features, **expert_mlp) for _ in range(num_expert)]
)
gate_final_in = in_features
self.has_gate_mlp = False
if gate_mlp is not None:
self.has_gate_mlp = True
self.gate_mlps = nn.ModuleList(
[MLP(in_features=in_features, **gate_mlp) for _ in range(num_task)]
)
gate_final_in = self.gate_mlps[0].hidden_units[-1]
self.gate_finals = nn.ModuleList(
[nn.Linear(gate_final_in, num_expert) for _ in range(num_task)]
)
def output_dim(self) -> int:
"""Output dimension of the module."""
return self.expert_mlps[0].hidden_units[-1]
def forward(self, input: torch.Tensor) -> List[torch.Tensor]:
"""Forward the module."""
expert_fea_list = []
for i in range(self.num_expert):
expert_fea_list.append(self.expert_mlps[i](input))
expert_feas = torch.stack(expert_fea_list, dim=1)
result = []
for i in range(self.num_task):
if self.has_gate_mlp:
gate = self.gate_mlps[i](input)
else:
gate = input
gate = self.gate_finals[i](gate)
gate = F.softmax(gate, dim=1).unsqueeze(1)
task_input = torch.matmul(gate, expert_feas).squeeze(1)
result.append(task_input)
return result