Dassl.pytorch/dassl/optim/radam.py [20:43]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def __init__(
        self,
        params,
        lr=1e-3,
        betas=(0.9, 0.999),
        eps=1e-8,
        weight_decay=0,
        degenerated_to_sgd=True,
    ):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError(
                "Invalid beta parameter at index 0: {}".format(betas[0])
            )
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError(
                "Invalid beta parameter at index 1: {}".format(betas[1])
            )

        self.degenerated_to_sgd = degenerated_to_sgd
        defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



Dassl.pytorch/dassl/optim/radam.py [135:158]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def __init__(
        self,
        params,
        lr=1e-3,
        betas=(0.9, 0.999),
        eps=1e-8,
        weight_decay=0,
        degenerated_to_sgd=True,
    ):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError(
                "Invalid beta parameter at index 0: {}".format(betas[0])
            )
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError(
                "Invalid beta parameter at index 1: {}".format(betas[1])
            )

        self.degenerated_to_sgd = degenerated_to_sgd
        defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



