in Dassl.pytorch/dassl/engine/da/m3sda.py [0:0]
def forward_backward(self, batch_x, batch_u):
parsed = self.parse_batch_train(batch_x, batch_u)
input_x, label_x, domain_x, input_u = parsed
input_x = torch.split(input_x, self.split_batch, 0)
label_x = torch.split(label_x, self.split_batch, 0)
domain_x = torch.split(domain_x, self.split_batch, 0)
domain_x = [d[0].item() for d in domain_x]
# Step A
loss_x = 0
feat_x = []
for x, y, d in zip(input_x, label_x, domain_x):
f = self.F(x)
z1, z2 = self.C[d](f)
loss_x += F.cross_entropy(z1, y) + F.cross_entropy(z2, y)
feat_x.append(f)
loss_x /= self.n_domain
feat_u = self.F(input_u)
loss_msda = self.moment_distance(feat_x, feat_u)
loss_step_A = loss_x + loss_msda * self.lmda
self.model_backward_and_update(loss_step_A)
# Step B
with torch.no_grad():
feat_u = self.F(input_u)
loss_x, loss_dis = 0, 0
for x, y, d in zip(input_x, label_x, domain_x):
with torch.no_grad():
f = self.F(x)
z1, z2 = self.C[d](f)
loss_x += F.cross_entropy(z1, y) + F.cross_entropy(z2, y)
z1, z2 = self.C[d](feat_u)
p1 = F.softmax(z1, 1)
p2 = F.softmax(z2, 1)
loss_dis += self.discrepancy(p1, p2)
loss_x /= self.n_domain
loss_dis /= self.n_domain
loss_step_B = loss_x - loss_dis
self.model_backward_and_update(loss_step_B, "C")
# Step C
for _ in range(self.n_step_F):
feat_u = self.F(input_u)
loss_dis = 0
for d in domain_x:
z1, z2 = self.C[d](feat_u)
p1 = F.softmax(z1, 1)
p2 = F.softmax(z2, 1)
loss_dis += self.discrepancy(p1, p2)
loss_dis /= self.n_domain
loss_step_C = loss_dis
self.model_backward_and_update(loss_step_C, "F")
loss_summary = {
"loss_step_A": loss_step_A.item(),
"loss_step_B": loss_step_B.item(),
"loss_step_C": loss_step_C.item(),
}
if (self.batch_idx + 1) == self.num_batches:
self.update_lr()
return loss_summary