in Dassl.pytorch/dassl/engine/da/cdac.py [0:0]
def forward_backward(self, batch_x, batch_u):
current_itr = self.epoch * self.num_batches + self.batch_idx
input_x, label_x, input_u, input_us, input_us2, label_u = self.parse_batch_train(
batch_x, batch_u
)
# Paper Reference Eq. 2 - Supervised Loss
feat_x = self.F(input_x)
logit_x = self.C(feat_x)
loss_x = F.cross_entropy(logit_x, label_x)
self.model_backward_and_update(loss_x)
feat_u = self.F(input_u)
feat_us = self.F(input_us)
feat_us2 = self.F(input_us2)
# Paper Reference Eq.3 - Adversarial Adaptive Loss
logit_u = self.C(feat_u, reverse=True)
logit_us = self.C(feat_us, reverse=True)
prob_u, prob_us = F.softmax(logit_u, dim=1), F.softmax(logit_us, dim=1)
# Get similarity matrix s_ij
sim_mat = self.get_similarity_matrix(feat_u, self.topk, self.device)
aac_loss = (-1. * self.aac_criterion(sim_mat, prob_u, prob_us))
# Paper Reference Eq. 4 - Pseudo label Loss
logit_u = self.C(feat_u)
logit_us = self.C(feat_us)
logit_us2 = self.C(feat_us2)
prob_u, prob_us, prob_us2 = F.softmax(
logit_u, dim=1
), F.softmax(
logit_us, dim=1
), F.softmax(
logit_us2, dim=1
)
prob_u = prob_u.detach()
max_probs, max_idx = torch.max(prob_u, dim=-1)
mask = max_probs.ge(self.p_thresh).float()
p_u_stats = self.assess_y_pred_quality(max_idx, label_u, mask)
pl_loss = (
F.cross_entropy(logit_us2, max_idx, reduction='none') * mask
).mean()
# Paper Reference Eq. 8 - Consistency Loss
cons_multi = self.sigmoid_rampup(
current_itr=current_itr, rampup_itr=self.rampup_iters
) * self.rampup_coef
cons_loss = cons_multi * F.mse_loss(prob_us, prob_us2)
loss_u = aac_loss + pl_loss + cons_loss
self.model_backward_and_update(loss_u)
loss_summary = {
"loss_x": loss_x.item(),
"acc_x": compute_accuracy(logit_x, label_x)[0].item(),
"loss_u": loss_u.item(),
"aac_loss": aac_loss.item(),
"pl_loss": pl_loss.item(),
"cons_loss": cons_loss.item(),
"p_u_pred_acc": p_u_stats["acc_raw"],
"p_u_pred_acc_thre": p_u_stats["acc_thre"],
"p_u_pred_keep": p_u_stats["keep_rate"]
}
# Update LR after every iteration as mentioned in the paper
self.update_lr()
return loss_summary