in Dassl.pytorch/dassl/evaluation/evaluator.py [0:0]
def evaluate(self):
results = OrderedDict()
acc = 100.0 * self._correct / self._total
err = 100.0 - acc
macro_f1 = 100.0 * f1_score(
self._y_true,
self._y_pred,
average="macro",
labels=np.unique(self._y_true)
)
# The first value will be returned by trainer.test()
results["accuracy"] = acc
results["error_rate"] = err
results["macro_f1"] = macro_f1
print(
"=> result\n"
f"* total: {self._total:,}\n"
f"* correct: {self._correct:,}\n"
f"* accuracy: {acc:.2f}%\n"
f"* error: {err:.2f}%\n"
f"* macro_f1: {macro_f1:.2f}%"
)
if self._per_class_res is not None:
labels = list(self._per_class_res.keys())
labels.sort()
print("=> per-class result")
accs = []
for label in labels:
classname = self._lab2cname[label]
res = self._per_class_res[label]
correct = sum(res)
total = len(res)
acc = 100.0 * correct / total
accs.append(acc)
print(
f"* class: {label} ({classname})\t"
f"total: {total:,}\t"
f"correct: {correct:,}\t"
f"acc: {acc:.1f}%"
)
mean_acc = np.mean(accs)
print(f"* average: {mean_acc:.1f}%")
results["perclass_accuracy"] = mean_acc
if self.cfg.TEST.COMPUTE_CMAT:
cmat = confusion_matrix(
self._y_true, self._y_pred, normalize="true"
)
save_path = osp.join(self.cfg.OUTPUT_DIR, "cmat.pt")
torch.save(cmat, save_path)
print(f"Confusion matrix is saved to {save_path}")
return results