in synthesis/feature_sample.py [0:0]
def gen_ood(self, anchors=None, normed=True, device='cuda:0', cls_mask=None, ret_cand=False):
ood_samples, ood_labels = [], []
if self.mode == 'vos':
ood_samples, ood_labels = [], []
mean_embed_id = self.queue.mean(dim=1, keepdim=True)
X = self.queue - mean_embed_id
covariance = torch.bmm(X.permute(0,2,1), X).mean(dim=0) / self.sample_number
covariance += 0.0001 * torch.eye(len(covariance), device=X.device)
new_dis = MultivariateNormal(torch.zeros(512).cuda(), covariance_matrix=covariance)
negative_samples = new_dis.rsample((self.sample_from,))
prob_density = new_dis.log_prob(negative_samples)
cur_samples, index_prob = torch.topk(- prob_density, self.select)
negative_samples = negative_samples[index_prob]
for ci, miu in enumerate(mean_embed_id):
rand_ind = torch.randperm(self.select)[:self.pick_nums]
ood_samples.append(miu + negative_samples[rand_ind])
ood_labels.extend([ci] * self.pick_nums)
ood_samples = torch.cat(ood_samples)
elif self.mode == 'npos':
negative_samples = self.new_dis.rsample((self.sample_from,)).half().to(self.device)
text_anchors = anchors.to(self.device) if anchors is not None else None
ood_samples, ood_labels = generate_outliers(self.queue, input_index=self.KNN_index, negative_samples=negative_samples,
ID_points_num=self.ID_points_num, K=self.K, select=self.select,
sampling_ratio=1.0, pic_nums=self.pick_nums, depth=self.feat_dim,
text_anchors=text_anchors, cls_mask=cls_mask)
elif self.mode == 'ours':
negative_samples = self.new_dis.rsample((self.sample_from,)).to(self.device)
ood_samples, ood_labels, candidates = \
generate_outliers_ours(self.queue.float(), input_index=self.KNN_index, negative_samples=negative_samples,
ID_points_num=self.ID_points_num, K=self.K, select=self.select,
sampling_ratio=1.0, pic_nums=self.pick_nums, depth=self.feat_dim,
text_anchors=anchors.float())
ood_samples = torch.cat(ood_samples).to(device)
if normed:
ood_samples = F.normalize(ood_samples, p=2, dim=1)
ood_labels = torch.tensor(ood_labels).to(device)
if ret_cand:
return ood_samples, ood_labels, candidates
return ood_samples, ood_labels