in Dassl.pytorch/dassl/modeling/backbone/wide_resnet.py [0:0]
def __init__(self, depth, widen_factor, dropRate=0.0):
super().__init__()
nChannels = [
16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor
]
assert (depth-4) % 6 == 0
n = (depth-4) / 6
block = BasicBlock
# 1st conv before any network block
self.conv1 = nn.Conv2d(
3, nChannels[0], kernel_size=3, stride=1, padding=1, bias=False
)
# 1st block
self.block1 = NetworkBlock(
n, nChannels[0], nChannels[1], block, 1, dropRate
)
# 2nd block
self.block2 = NetworkBlock(
n, nChannels[1], nChannels[2], block, 2, dropRate
)
# 3rd block
self.block3 = NetworkBlock(
n, nChannels[2], nChannels[3], block, 2, dropRate
)
# global average pooling and classifier
self.bn1 = nn.BatchNorm2d(nChannels[3])
self.relu = nn.LeakyReLU(0.01, inplace=True)
self._out_features = nChannels[3]
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
m.weight, mode="fan_out", nonlinearity="relu"
)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()