def forward_backward()

in Dassl.pytorch/dassl/engine/da/dael.py [0:0]


    def forward_backward(self, batch_x, batch_u):
        parsed_data = self.parse_batch_train(batch_x, batch_u)
        input_x, input_x2, label_x, domain_x, input_u, input_u2 = parsed_data

        input_x = torch.split(input_x, self.split_batch, 0)
        input_x2 = torch.split(input_x2, self.split_batch, 0)
        label_x = torch.split(label_x, self.split_batch, 0)
        domain_x = torch.split(domain_x, self.split_batch, 0)
        domain_x = [d[0].item() for d in domain_x]

        # Generate pseudo label
        with torch.no_grad():
            feat_u = self.F(input_u)
            pred_u = []
            for k in range(self.num_source_domains):
                pred_uk = self.E(k, feat_u)
                pred_uk = pred_uk.unsqueeze(1)
                pred_u.append(pred_uk)
            pred_u = torch.cat(pred_u, 1)  # (B, K, C)
            # Get the highest probability and index (label) for each expert
            experts_max_p, experts_max_idx = pred_u.max(2)  # (B, K)
            # Get the most confident expert
            max_expert_p, max_expert_idx = experts_max_p.max(1)  # (B)
            pseudo_label_u = []
            for i, experts_label in zip(max_expert_idx, experts_max_idx):
                pseudo_label_u.append(experts_label[i])
            pseudo_label_u = torch.stack(pseudo_label_u, 0)
            pseudo_label_u = create_onehot(pseudo_label_u, self.num_classes)
            pseudo_label_u = pseudo_label_u.to(self.device)
            label_u_mask = (max_expert_p >= self.conf_thre).float()

        loss_x = 0
        loss_cr = 0
        acc_x = 0

        feat_x = [self.F(x) for x in input_x]
        feat_x2 = [self.F(x) for x in input_x2]
        feat_u2 = self.F(input_u2)

        for feat_xi, feat_x2i, label_xi, i in zip(
            feat_x, feat_x2, label_x, domain_x
        ):
            cr_s = [j for j in domain_x if j != i]

            # Learning expert
            pred_xi = self.E(i, feat_xi)
            loss_x += (-label_xi * torch.log(pred_xi + 1e-5)).sum(1).mean()
            expert_label_xi = pred_xi.detach()
            acc_x += compute_accuracy(pred_xi.detach(),
                                      label_xi.max(1)[1])[0].item()

            # Consistency regularization
            cr_pred = []
            for j in cr_s:
                pred_j = self.E(j, feat_x2i)
                pred_j = pred_j.unsqueeze(1)
                cr_pred.append(pred_j)
            cr_pred = torch.cat(cr_pred, 1)
            cr_pred = cr_pred.mean(1)
            loss_cr += ((cr_pred - expert_label_xi)**2).sum(1).mean()

        loss_x /= self.n_domain
        loss_cr /= self.n_domain
        acc_x /= self.n_domain

        # Unsupervised loss
        pred_u = []
        for k in range(self.num_source_domains):
            pred_uk = self.E(k, feat_u2)
            pred_uk = pred_uk.unsqueeze(1)
            pred_u.append(pred_uk)
        pred_u = torch.cat(pred_u, 1)
        pred_u = pred_u.mean(1)
        l_u = (-pseudo_label_u * torch.log(pred_u + 1e-5)).sum(1)
        loss_u = (l_u * label_u_mask).mean()

        loss = 0
        loss += loss_x
        loss += loss_cr
        loss += loss_u * self.weight_u
        self.model_backward_and_update(loss)

        loss_summary = {
            "loss_x": loss_x.item(),
            "acc_x": acc_x,
            "loss_cr": loss_cr.item(),
            "loss_u": loss_u.item(),
        }

        if (self.batch_idx + 1) == self.num_batches:
            self.update_lr()

        return loss_summary