in Dassl.pytorch/dassl/modeling/network/ddaig_fcn.py [0:0]
def init_network_weights(model, init_type="normal", gain=0.02):
def _init_func(m):
classname = m.__class__.__name__
if hasattr(m, "weight") and (
classname.find("Conv") != -1 or classname.find("Linear") != -1
):
if init_type == "normal":
nn.init.normal_(m.weight.data, 0.0, gain)
elif init_type == "xavier":
nn.init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == "kaiming":
nn.init.kaiming_normal_(m.weight.data, a=0, mode="fan_in")
elif init_type == "orthogonal":
nn.init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError(
"initialization method {} is not implemented".
format(init_type)
)
if hasattr(m, "bias") and m.bias is not None:
nn.init.constant_(m.bias.data, 0.0)
elif classname.find("BatchNorm2d") != -1:
nn.init.constant_(m.weight.data, 1.0)
nn.init.constant_(m.bias.data, 0.0)
elif classname.find("InstanceNorm2d") != -1:
if m.weight is not None and m.bias is not None:
nn.init.constant_(m.weight.data, 1.0)
nn.init.constant_(m.bias.data, 0.0)
model.apply(_init_func)